精英家教網 > 初中數學 > 題目詳情
(2011•同安區(qū)質檢)如圖,點A、B為地球儀的南、北極點,直線AB與放置地球儀的平面交于點D,所成的角度約為67°,半徑OC所在的直線與放置平面垂直,垂足為點E.DE=15cm,AD=14cm.求半徑OA的長.(精確到0.1cm)
參考數據:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36.

【答案】分析:在Rt△ODE中,DE=15,∠ODE=67°,根據∠ODE的余弦值,即可求得OD長,減去AD即為OA.
解答:解:在Rt△ODE中,DE=15,∠ODE=67°,
∵cos∠ODE=,
∴OD≈≈38.46(cm),
∴OA=OD-AD≈38.46-14≈24.5(cm).
答:半徑OA的長約為24.5cm.
點評:本題首先把實際問題轉化成數學問題,主要利用了三角函數中余弦定義來解題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2011•同安區(qū)質檢)已知a是關于x的方程x2-bx-a=0的根,若a≠0,則a-b=
1
1

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•同安區(qū)質檢)(1)計算:|-3 |-
4
-(
1
2
)-1

(2)解不等式組
1
2
x≤1
2-x<3

(3)先化簡,再求值
x
x2-1
x2+x
x2
,其中x=2.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•同安區(qū)質檢)如圖,已知正方形ABCD的邊長是2,E是AB的中點,延長BC到點F使CF=AE.
(1)求證:△ADE≌△CDF;
(2)現(xiàn)把△DCF向左平移,使DC與AB重合,得△ABH,AH交ED于點G.求AG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•同安區(qū)質檢)已知:如圖,A(a,m),B(2a,n)是反比例函數y=
k
x
(k>0)
圖象上的兩點,分別過A,B兩點作x軸的垂線,垂足分別為C、D,連接OA,OB.
(1)求證:S△AOC=S△OBD;
(2)若A,B兩點又在一次函數y=-
4
3
x+b
的圖象上,且S△OAB=8,求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•同安區(qū)質檢)我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)如圖1,已知格點(小正方形的頂點)O(0,0),A(4,0),B(0,3),請你畫出以格點為頂點,OA,OB為勾股邊且對角線相等的勾股四邊形OAMB;
(2)如圖2,將△ABC繞頂點B按順時針方向旋轉60°,得到△DBE,連接AD,DC,∠DCB=30°.求證:四邊形ABCD是以DC、BC為勾股邊的勾股四邊形.

查看答案和解析>>

同步練習冊答案