如圖,拋物線軸的一個交點(diǎn)A在點(diǎn)(-2,0)和(-1,0)之間(包括這兩點(diǎn)),頂點(diǎn)C是矩形DEFG上(包括邊界和內(nèi)部)的一個動點(diǎn),則

(1)        (填“”或“”);

(2)a的取值范圍是                 。

 

【答案】

      

【解析】解:觀察圖形發(fā)現(xiàn),由拋物線的開口向下得到a<0,頂點(diǎn)坐標(biāo)在第一象限得到b>0,拋物線與y軸的交點(diǎn)在y軸的上方推出c>0,由此即可判定

①當(dāng)拋物線過當(dāng)以D為頂點(diǎn),過(-1,0)時,拋物線開口最小,a的絕對值最大為

②當(dāng)拋物線過當(dāng)以F為頂點(diǎn),過(-2,0)時,拋物線開口最大,a的絕對值最小為 

將a值代入拋物線,得:

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•歷下區(qū)一模)如圖,拋物線與x軸交于A(-1,0),B(4,0)兩點(diǎn),與y軸交于C(0,3),M是拋物線對稱軸上的任意一點(diǎn),則△AMC的周長最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知m,n是方程x2-6x+5=0的兩個實(shí)數(shù)根,且m<n拋物線y=-x2+bx+c.的圖象經(jīng)過點(diǎn)A(m,0),B(0,n).
(1)求這個拋物線的解析式;
(2)如圖,拋物線與x軸的另一交點(diǎn)為C,B為y軸拋物線的交點(diǎn),若P是線段OC上的一點(diǎn),過點(diǎn)P作PH⊥x軸,與拋物線交于點(diǎn)H,若直線BC把△PCH分成面積之比為2:3的兩部分,請求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與軸交于、(6 , 0)兩點(diǎn),且對稱軸為直線x = 2,與軸交于點(diǎn)。

(1)求拋物線的解析式;

(2)點(diǎn)是拋物線對稱軸上的一個動點(diǎn),連接MA、MC,

當(dāng)△MAC的周長最小時,求點(diǎn)的坐標(biāo);

(3)點(diǎn)在(1)中拋物線上,點(diǎn)為拋物線上一

動點(diǎn),在軸上是否存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形,如果存在,直接寫出所有

滿足條件的點(diǎn)的坐標(biāo),若不存在,請說明理由。

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年內(nèi)蒙古巴彥淖爾市磴口縣誠仁中學(xué)中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

已知m,n是方程x2-6x+5=0的兩個實(shí)數(shù)根,且m<n拋物線y=-x2+bx+c.的圖象經(jīng)過點(diǎn)A(m,0),B(0,n).
(1)求這個拋物線的解析式;
(2)如圖,拋物線與x軸的另一交點(diǎn)為C,B為y軸拋物線的交點(diǎn),若P是線段OC上的一點(diǎn),過點(diǎn)P作PH⊥x軸,與拋物線交于點(diǎn)H,若直線BC把△PCH分成面積之比為2:3的兩部分,請求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年上海市徐匯區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2011•徐匯區(qū)一模)如圖,拋物線與x軸相交于A、B,與y軸相交于點(diǎn)C,過點(diǎn)C作CD∥x軸,交拋物線點(diǎn)D.
(1)求梯形ABCD的面積;
(2)若梯形ACDB的對角線AC、BD交于點(diǎn)E,求點(diǎn)E的坐標(biāo),并求經(jīng)過A、B、E三點(diǎn)的拋物線的解析式;
(3)點(diǎn)P是直線CD上一點(diǎn),且△PBC與△ABC相似,求符合條件的P點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案