【題目】若一個(gè)整數(shù)能表示成(a、b是正整數(shù))的形式,則稱這個(gè)數(shù)為吉祥數(shù).例如,2吉祥數(shù)”,因?yàn)?/span>2=所以2吉祥數(shù)”,再如,因?yàn)?/span>M=x+2xy+2y=(x+y)+y(x+y,y是正整數(shù)),所以M也是吉祥數(shù)

1)請(qǐng)你寫一個(gè)最小的三位吉祥數(shù)_____,并判斷40______“吉祥數(shù)”.(填是或不是)

2)已知S=x+y+2x6y+k(x、y是正整數(shù),k是常數(shù)),要使S吉祥數(shù)”,試求出符合條件的一個(gè)k值,并說明理由.

【答案】1100,是;(210

【解析】

1)根據(jù)定義寫出最小的吉祥數(shù),根據(jù)40=62+22,所以判斷40也是吉祥數(shù);
2)將S配方,變形為S=x+12+y-32+k-10),可得k=10;當(dāng)(x+12=0時(shí),所以k-10為平方數(shù),則可得很多k的值,當(dāng)(y-32=0,同理可得很多k的值.

1)∵62=36,82=64
∴最小的三位吉祥數(shù)是:62+82=100,
40=62+22,
40豐利數(shù)
故答案為:100;是;
2S=x2+y2+2x-6y+k,
=x2+2x+1+y2-6y+9+k-10),
=x+12+y-32+k-10),
當(dāng)(x+12、(y-32是正整數(shù)的平方時(shí),k-10為零時(shí),S吉祥數(shù),
k的一個(gè)值可以是10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊AD,BC的中點(diǎn),連接DF,過點(diǎn)EEHDF,垂足為H,EH的延長(zhǎng)線交DC于點(diǎn)G.

(1)猜想DGCF的數(shù)量關(guān)系,并證明你的結(jié)論;

(2)過點(diǎn)HMNCD,分別交AD,BC于點(diǎn)M,N,若正方形ABCD的邊長(zhǎng)為10,點(diǎn)PMN上一點(diǎn),求△PDC周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC中,點(diǎn)P為BC邊中點(diǎn),直線a繞頂點(diǎn)A旋轉(zhuǎn),若點(diǎn)B,P在直線a的異側(cè),BM⊥直線a于點(diǎn)M.CN⊥直線a于點(diǎn)N,連接PM,PN.

(1)延長(zhǎng)MP交CN于點(diǎn)E(如圖②).

①求證:△BPM≌△CPE;

②求證:PM=PN;

(2)若直線a繞點(diǎn)A旋轉(zhuǎn)到圖③的位置時(shí),點(diǎn)B,P在直線a的同側(cè),其它條件不變,此時(shí)PM=PN還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;

(3)若直線a繞點(diǎn)A旋轉(zhuǎn)到與BC邊平行的位置時(shí),其它條件不變,請(qǐng)直接判斷四邊形MBCN的形狀及此時(shí)PM=PN還成立嗎?不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,點(diǎn)D是直線BC上一動(dòng)點(diǎn)(不與點(diǎn)B,C重合),在AD右側(cè)作ADE,使得AD=AE,∠DAE=BAC,聯(lián)結(jié)DE,CE。

1)當(dāng)點(diǎn)DBC邊上時(shí),求證:EC=DB;

2)當(dāng)ECAB,若ABD的最小角為20°,請(qǐng)寫出ADB的度數(shù),并對(duì)其中一個(gè)答案加以證明。

答:∠ADB的度數(shù)除了20°,還可能是 (直接寫出所有答案,并對(duì)其中一個(gè)答案加以證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小馬、小虎兩人共同計(jì)算一道題:(x+a)(2x+b).由于小馬抄錯(cuò)了a的符號(hào),得到的結(jié)果是2x27x+3,小虎漏抄了第二個(gè)多項(xiàng)式中x的系數(shù)得到的結(jié)果是x2+2x3

1)求ab的值;

2)細(xì)心的你請(qǐng)計(jì)算這道題的正確結(jié)果;

3)當(dāng)x=﹣1時(shí),計(jì)算(2)中的代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的邊長(zhǎng)AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則點(diǎn)A2 019的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn) AB的坐標(biāo)分別為(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.

(1)圖1中,點(diǎn)C的坐標(biāo)為

(2)如圖2,點(diǎn)D的坐標(biāo)為(0,1),點(diǎn)E在射線CD上,過點(diǎn)BBFBEy軸于點(diǎn)F

①當(dāng)點(diǎn)E為線段CD的中點(diǎn)時(shí),求點(diǎn)F的坐標(biāo);

②當(dāng)點(diǎn)E在第二象限時(shí),請(qǐng)直接寫出F點(diǎn)縱坐標(biāo)y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方形ABCD的兩邊長(zhǎng)分別為m+13m+3(其中為m正整數(shù)),且正方形EFGH的周長(zhǎng)與長(zhǎng)方形ABCD的周長(zhǎng)相等.

(Ⅰ)求正方形EFGH的邊長(zhǎng)(用含有m的代數(shù)式表示);

(Ⅱ)長(zhǎng)方形ABCD的面積記為S1,正方形EFGH的面積記為S2,請(qǐng)比較S1S2的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案