【題目】如圖1,已知拋物線y=﹣x2+bx+cy軸于點(diǎn)A(0,4),交x軸于點(diǎn)B(4,0),點(diǎn)P是拋物線上一動(dòng)點(diǎn),試過點(diǎn)Px軸的垂線1,再過點(diǎn)A1的垂線,垂足為Q,連接AP

(1)求拋物線的函數(shù)表達(dá)式和點(diǎn)C的坐標(biāo);

(2)若△AQP∽△AOC,求點(diǎn)P的橫坐標(biāo);

(3)如圖2,當(dāng)點(diǎn)P位于拋物線的對稱軸的右側(cè)時(shí),若將△APQ沿AP對折,點(diǎn)Q的對應(yīng)點(diǎn)為點(diǎn)Q′,請直接寫出當(dāng)點(diǎn)Q′落在坐標(biāo)軸上時(shí)點(diǎn)P的坐標(biāo).

【答案】(1)y=﹣x2+3x+4;(10);(2)P的橫坐標(biāo)為.(3)點(diǎn)P的坐標(biāo)為(4,0)(5,﹣6)(2,6).

【解析】

(1)利用待定系數(shù)法求拋物線解析式,然后利用拋物線解析式得到一元二次方程,通過解一元二次方程得到C點(diǎn)坐標(biāo);

(2)利用△AQP∽△AOC得到AQ4PQ,設(shè)P(m,﹣m2+3m+4),所以m4|4(m2+3m+4|,然后解方程4(m23m)m和方程4(m23m)=﹣mP點(diǎn)坐標(biāo);

(3)設(shè)P(m,﹣m2+3m+4)(m),當(dāng)點(diǎn)Q′落在x軸上,延長QPx軸于H,如圖2,則PQm23m,證明RtAOQ′∽RtQHP,利用相似比得到QB4m12,則OQ′=123m,在RtAOQ′中,利用勾股定理得到方程42+(123m)2m2,然后解方程求出m得到此時(shí)P點(diǎn)坐標(biāo);當(dāng)點(diǎn)Q′落在y軸上,易得點(diǎn)AQ′、P、Q所組成的四邊形為正方形,利用PQPQ′得到|m23m|m,然后解方程m23mm和方程m23m=﹣m得此時(shí)P點(diǎn)坐標(biāo).

解:(1)A(0,4),B(4,0)分別代入y=﹣x2+bx+c,解得,

∴拋物線解析式為y=﹣x2+3x+4

當(dāng)y0時(shí),﹣x2+3x+40,解得x1=﹣1x24,

C(1,0);

故答案為y=﹣x2+3x+4(1,0)

(2)∵△AQP∽△AOC,

,

,即AQ4PQ,

設(shè)P(m,﹣m2+3m+4)

m4|4(m2+3m+4|,即4|m23m|m

解方程4(m23m)mm10(舍去),m2,此時(shí)P點(diǎn)橫坐標(biāo)為;

解方程4(m23m)=﹣mm10(舍去),m2,此時(shí)P點(diǎn)坐標(biāo)為

綜上所述,點(diǎn)P的坐標(biāo)為(,)(,);

(3)設(shè)

當(dāng)點(diǎn)Q′落在x軸上,延長QPx軸于H,如圖2,

PQ4(m2+3m+4)m23m

∵△APQ沿AP對折,點(diǎn)Q的對應(yīng)點(diǎn)為點(diǎn)Q'

∴∠AQP=∠AQP90°,AQ′=AQmPQ′=PQm23m,

∵∠AQO=∠QPH,

RtAOQ′∽RtQHP,

,即,解得QH4m12,

OQ′=m(4m12)123m

RtAOQ′中,42+(123m)2m2

整理得m29m+200,解得m14m25,此時(shí)P點(diǎn)坐標(biāo)為(4,0)(5,﹣6);

當(dāng)點(diǎn)Q′落在y軸上,則點(diǎn)A、Q′、P、Q所組成的四邊形為正方形,

PQAQ′,

|m23m|m

解方程m23mmm10(舍去),m24,此時(shí)P點(diǎn)坐標(biāo)為(4,0)

解方程m23m=﹣mm10(舍去),m22,此時(shí)P點(diǎn)坐標(biāo)為(2,6),

綜上所述,點(diǎn)P的坐標(biāo)為(40)(5,﹣6)(2,6)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校學(xué)生對《最強(qiáng)大腦》、《朗讀者》、《中國詩詞大會(huì)》、《出彩中國人》四個(gè)電視節(jié)目的喜愛情況,隨杋抽取了名學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì)(要求每名學(xué)生選出并且只能選出一個(gè)自己最喜愛的節(jié)目),并將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表:

學(xué)生最喜愛的節(jié)目人數(shù)統(tǒng)計(jì)表

節(jié)目

人數(shù)(名)

百分比

最強(qiáng)大腦

5

10%

朗讀者

15

中國詩詞大會(huì)

40%

出彩中國人

10

20%


根據(jù)以上信息,回答下列問題:

1  ,  ;

2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;

3)若該校共有學(xué)生名,估計(jì)該校學(xué)生最喜愛《朗讀者》節(jié)目的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在全國預(yù)防新冠肺炎時(shí)期,某廠接受了生產(chǎn)一批高質(zhì)量醫(yī)用口罩的任務(wù).要求8天之內(nèi)(含8天)生產(chǎn)型和型兩種型號的口罩共5萬只,其中型口罩不得少于1.8萬只.該廠的生產(chǎn)能力是:每天只能生產(chǎn)一種型號的口罩,若生產(chǎn)型口罩每天能生產(chǎn)0.6萬只,若生產(chǎn)型口罩每天能生產(chǎn)0.8萬只.已知生產(chǎn)6型和10型口罩一共獲利6元,生產(chǎn)4型和5型口罩一共獲利3.5

1)生產(chǎn)一只型口罩和型口罩分別獲利多少錢?

2)若生產(chǎn)型口罩萬只,該廠這次生產(chǎn)口罩的總利潤為萬元,請求出關(guān)于的函數(shù)關(guān)系式;

3)在完成任務(wù)的前提下,如何安排生產(chǎn)型和型口罩的只數(shù),使獲得的總利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線yx2mx+n

1)當(dāng)m2時(shí),

①求拋物線的對稱軸,并用含n的式子表示頂點(diǎn)的縱坐標(biāo);

②若點(diǎn)A(﹣2,y1),Bx2y2)都在拋物線上,且y2y1,則x2的取值范圍是   ;

2)已知點(diǎn)P(﹣1,2),將點(diǎn)P向右平移4個(gè)單位長度,得到點(diǎn)Q.當(dāng)n3時(shí),若拋物線與線段PQ恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,李老師準(zhǔn)備了四張背面都一樣的卡片AB、CD,每張卡片的正面標(biāo)有字母a、bc表示三條線段(如下圖).把四張卡片背面朝上放在桌面上,李老師從這四張卡片中隨機(jī)抽取一張卡片后不放回,再隨機(jī)抽取一張.

李老師隨機(jī)抽取一張卡片,抽到卡片B的概率等于 ;

求李老師抽取的兩張卡片中每張卡片上的三條線段都能組成三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校為了了解九年級學(xué)生身體素質(zhì)測試情況,隨機(jī)抽取了本校九年級部分學(xué)生的身體素質(zhì)測試成績?yōu)闃颖,?/span>A(優(yōu)秀)、B(良好)、C(合格)、D(不合格)四個(gè)等級進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如圖不完整的統(tǒng)計(jì)圖,請你結(jié)合圖表所給信息解答下列問題:

1)請?jiān)诖痤}卡上直接將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)扇形統(tǒng)計(jì)圖中“B”部分所對應(yīng)的圓心角的度數(shù)是   °;

3)若我校九年級共有1500名學(xué)生參加了身體素質(zhì)測試,試估計(jì)測試成績合格以上(含合格)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖正方形ABCD,EAB中點(diǎn),P為對角線AC上一點(diǎn),且PB+PE=,則正方形ABCD邊長的最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)歷疫情復(fù)學(xué)后,學(xué)校開展了多種形式的防疫知識講座,并舉行了全員參加的防疫知識競賽,試卷題目共10題,每題10分.現(xiàn)分別從七年級1,2,3班中各隨機(jī)抽取10名同學(xué)的成績(單位:分).

收集整理數(shù)據(jù)如下:

分析數(shù)據(jù):

平均數(shù)

中位數(shù)

眾數(shù)

1

83

80

2

83

3

80

80

根據(jù)以上信息回答下列問題:

1)請直接寫出表格中,,的值;

2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認(rèn)為哪個(gè)班的成績比較好?請說明理由(一條理由即可);

3)為了讓學(xué)生重視安全知識的學(xué)習(xí),學(xué)校將給競賽成績滿分的同學(xué)頒發(fā)獎(jiǎng)狀,該校七年級學(xué)生共120人,試估計(jì)需要準(zhǔn)備多少張獎(jiǎng)狀?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的中點(diǎn),的中點(diǎn),過點(diǎn)的延長線于點(diǎn)

(1)求證:四邊形是菱形;

(2),,求菱形的面積.

查看答案和解析>>

同步練習(xí)冊答案