【題目】(1)如圖1,圖2,圖3,在中,分別以,為邊,向外作正三角形,正四邊形,正五邊形,,相交于點(diǎn)O.
①如圖1,求證:≌;
②探究:如圖1,________;如圖2,_______;如圖3,_______;
(2)如圖4,已知:,是以為邊向外所作正n邊形的一組鄰邊:,是以為邊向外所作正n邊形的一組鄰邊,,的延長(zhǎng)相交于點(diǎn)O.
①猜想:如圖4, (用含n的式子表示);
②根據(jù)圖4證明你的猜想.
【答案】(1)①見解析;②120°,90°,72°;(2)①;②見解析.
【解析】
(1)①要證明△ABE≌△ADC,題中△ABD與△ACE均為等邊三角形,容易得出AD=AB,AC=AE,∠DAB=∠EAC=60°,轉(zhuǎn)換可得∠DAC=∠BAE,然后利用SAS證明即可;
②如圖1,設(shè)AB與CD交于點(diǎn)M,根據(jù)①的結(jié)論△ABE≌△ADC可得∠ABE=∠ADC,再在△ADM和△BOM中利用三角形的內(nèi)角和即得∠BOD=∠BAD=60°,進(jìn)而可求出∠BOC的度數(shù);圖2與圖3的求解仿圖1即可;
(2)欲求∠BOC的度數(shù),可以利用SAS證明△ABE≌△ADC及正n邊形的內(nèi)角和定理,得出∠BOC+∠DAB=180°,進(jìn)一步即可求得∠BOC的度數(shù).
解:(1)①證明:∵△ABD與△ACE均為等邊三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC,
即∠DAC=∠BAE,
∴△ABE≌△ADC(SAS);
②120°,90°,72°.
圖1的求解:如圖1,設(shè)AB與CD交于點(diǎn)M,∵△ABE≌△ADC,∴∠ABE=∠ADC,
∵∠BMO=∠AMD,∴∠BOD=∠BAD=60°,∴∠BOC=120°;
圖2與圖3的求解仿圖1的方法即得.
(2)①.
②如圖4,依題意,知∠BAD和∠CAE都是正n邊形的內(nèi)角,AB=AD,AE=AC,
∴∠BAD=∠CAE=,
∴∠BAD﹣∠DAE=∠CAE﹣∠DAE,
即∠BAE=∠DAC,
∴△ABE≌△ADC(SAS),
∴∠ABE=∠ADC,
∵∠ADC+∠ODA=180°,
∴∠ABO+∠ODA=180°,
∵∠ABO+∠ODA+∠DAB+∠BOC=360°,
∴∠BOC+∠DAB=180°,
∴∠BOC=180°﹣∠DAB=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某建筑工程隊(duì)利用一面墻(墻的長(zhǎng)度不限),用40米長(zhǎng)的籬笆圍成一個(gè)長(zhǎng)方形的倉(cāng)庫(kù).
(1)求長(zhǎng)方形的面積是150平方米,求出長(zhǎng)方形兩鄰邊的長(zhǎng);
(2)能否圍成面積220平方米的長(zhǎng)方形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,是的中點(diǎn),是的中點(diǎn),過點(diǎn)作交的延長(zhǎng)線于點(diǎn).
求證:;
當(dāng)滿足什么條件時(shí),四邊形是菱形,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知等邊△ABC中,D是AC的中點(diǎn),E是BC延長(zhǎng)線上的一點(diǎn),且CE=CD,DM⊥BC,垂足為M.
(1)求∠E的度數(shù).
(2)求證:M是BE的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC外接圓上的動(dòng)點(diǎn),且B,D位于AC的兩側(cè),DE⊥AB,垂足為E,DE的延長(zhǎng)線交此圓于點(diǎn)F.BG⊥AD,垂足為G,BG交DE于點(diǎn)H,DC,F(xiàn)B的延長(zhǎng)線交于點(diǎn)P,且PC=PB.
(1)求證:BG∥CD;
(2)設(shè)△ABC外接圓的圓心為O,若AB=DH,∠OHD=80°,求∠BDE的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知的外角的平分線交邊的垂直平分線于點(diǎn).于點(diǎn),于點(diǎn).
(1)求證:
(2)若,,求的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30°,點(diǎn)P為∠AOB內(nèi)一點(diǎn),OP=8.點(diǎn)M、N分別在OA、OB上.當(dāng)△PMN周長(zhǎng)最小時(shí),下列結(jié)論:①∠MPN等于120°;②∠MPN等于100°;③△PMN周長(zhǎng)最小值為4;④△PMN周長(zhǎng)最小值為8,其中正確的是( )
A.①③B.②③C.①④D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,A(0,3)、B(3,0)、C(﹣3,0).
(1)過B作直線MN⊥AB,P為線段OC上的一動(dòng)點(diǎn),AP⊥PH交直線M于點(diǎn)H,證明:PA=PH.
(2)在(1)的條件下,若在點(diǎn)A處有一個(gè)等腰Rt△APQ繞點(diǎn)A旋轉(zhuǎn),且AP=PQ,∠APQ=90°,連接BQ,點(diǎn)G為BQ的中點(diǎn),試猜想線段OG與線段PG的數(shù)量關(guān)系與位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°AB的中垂線DE交AC于D,交AB于E,下述結(jié)論:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BCD的周長(zhǎng)等于AB+BC;(4)D是AC中點(diǎn)其中正確的命題序號(hào)是_________________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com