【題目】在平面直角坐標系中,給出如下定義:已知兩個函數(shù),如果對于任意的自變量x,這兩個函數(shù)對應(yīng)的函數(shù)值記為y1、y2,恒有點x,y1和點x,y2關(guān)于點x,x成中心對稱(此三個點可以重合),由于對稱中心x,x都在直線yx上,所以稱這兩個函數(shù)為關(guān)于直線yx的“相依函數(shù)”.例如:y3x和y5x為關(guān)于直線yx的“相依函數(shù)”
(1)已知點M1,m是直線y2x4上一點,請求出點M1,m關(guān)于點1,1成中心對稱的點N的坐標;
(2)若直線y3xn和它關(guān)于直線yx的“相依函數(shù)”的圖象與y軸圍成的三角形的面積為8,求n的值;
(3)若二次函數(shù)yax2bxc和yx2d為關(guān)于直線yx的“相依函數(shù)”.
①請求出a、b的值;
②已知點P3,2、點Q2,2,連接PQ,直接寫出yax2bxc和yx2d兩條拋物線與線段PQ有且只有兩個交點時對應(yīng)的d的取值范圍.
【答案】(1)M (1,6), N (1,4);(2)n 4;(3)①,②1 d 2或 7 d 2
【解析】
(1)先把M坐標代入直線y2x4,求出m的值,再根據(jù)與點1,1成中心對稱即可求出N的坐標;(2)根據(jù)相依函數(shù)的定義得,求得依函數(shù)解析式為: yxn,聯(lián)立兩函數(shù)求出交點的橫坐標,再利用y軸圍成的三角形的面積為8,得出式子求出n;(3)①由題意得,即,恒成立,即可求出a,b的值,②根據(jù)題意作出圖像,再根據(jù)圖像進行判斷.
解:(1)把M坐標代入直線y2x4,得m=6,
∵M,N關(guān)于(1,1)成中心對稱,故N(1,-4)
(2),可得相依函數(shù)解析式為: y x n
;解得:
,解得: n 4
(3)①,可得:,對于任意的 x 要恒成立,
則 ,
②, 當 3 x 2 的圖象如圖
綜上圖象可知: 1 d 2或 7 d 2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個反比例函數(shù)和在第一象限內(nèi)的圖象如圖所示,點P在的圖象上,PC⊥軸于點C,交的圖象于點A,PC⊥軸于點D,交的圖象于點B. 當點P在的圖象上運動時,以下結(jié)論:
①
②的值不會發(fā)生變化
③PA與PB始終相等
④當點A是PC的中點時,點B一定是PD的中點.
其中一定不正確的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線y=ax2+bx+c的對稱軸為直線x=1,且過點(3,0),下列結(jié)論:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正確的有( 。﹤.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的對稱軸為直線x=﹣1,圖象過(1,0)點,部分圖象如圖所示,下列判斷中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若點(﹣0.5,y1),(﹣2,y2)均在拋物線上,則y1>y2;⑤5a﹣2b+c<0.其中正確的個數(shù)有( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2與x軸相交于A(﹣1,0),B(4,0)兩點,與y軸相交于點C.
(1)求拋物線的解析式;
(2)將△ABC繞AB中點M旋轉(zhuǎn)180°,得到△BAD.
①求點D的坐標;
②判斷四邊形ADBC的形狀,并說明理由;
(3)在該拋物線對稱軸上是否存在點P,使△BMP與△BAD相似?若存在,請求出所有滿足條件的P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在方格紙中位置如圖所示
(1)請在方格紙上建立平面直角坐標系,使得A、B兩點的坐標分別為A(2,﹣1)、B(1,﹣4),并求出C點的坐標;
(2)作出△ABC關(guān)于橫軸對稱的△A1B1C1,再作出△ABC以坐標原點為旋轉(zhuǎn)中心、旋轉(zhuǎn)180°后的△A2B2C2,并寫C1,C2兩點的坐標;
(3)觀察△A1B1C1和△A2B2C2,其中的一個三角形能否由另一個三角形經(jīng)過某種變換而得到?若能,請指出什么變換.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為Q(2,﹣1),且與y軸交于點C(0,3),與x軸交于A,B兩點(點A在點B的右側(cè)),點P是該拋物線上的一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PD∥y軸,交AC于點D.
(1)求該拋物線的函數(shù)關(guān)系式;
(2)當△ADP是直角三角形時,求點P的坐標;
(3)在題(2)的結(jié)論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,將拋物線向右平移2個單位得到拋物線,且平移后的拋物線經(jīng)過點.
求平移后拋物線的表達式;
設(shè)原拋物線與y軸的交點為B,頂點為P,平移后的新拋物線的對稱軸與x軸交于點M,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+3與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C,頂點為D.
(1)直接寫出A、B、C三點的坐標和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設(shè)點P的橫坐標為m;
①用含m的代數(shù)式表示線段PF的長,并求出當m為何值時,四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com