寧波市土地利用現(xiàn)狀通過(guò)國(guó)土資源部驗(yàn)收,我市在節(jié)約集約用地方面已走在全國(guó)前列.1996---2004年,市區(qū)建設(shè)用地總量從33萬(wàn)畝增加到48萬(wàn)畝,相應(yīng)的年GDP從295億元增加到985億.寧波市區(qū)年GDPy(億元)與建設(shè)用地總量x(萬(wàn)畝)之間存在著如圖所示的一次函數(shù)關(guān)系.
(1)求y關(guān)于x的函數(shù)關(guān)系式.
(2)據(jù)調(diào)查2005年市區(qū)建設(shè)用地比2004年增加4萬(wàn)畝,如果這些土地按以上函數(shù)關(guān)系式開(kāi)發(fā)使用,那么2005年市區(qū)可以新增GDP多少億元?
(3)按以上函數(shù)關(guān)系式,我市年GDP每增加1億元,需增建設(shè)用地多少萬(wàn)畝?(精確到0.001萬(wàn)畝).
(1)設(shè)函數(shù)關(guān)系式為y=kx+b,由題意得,
33k+b=295
48k+b=985

解得k=46,b=-1223.
∴該函數(shù)關(guān)系式為y=46x-1 223.

(2)由(1)知2005年的年GDP為46×(48+4)-1 223=1169 (億元)
∵1169-985=184(億元)
∴2005年市區(qū)相應(yīng)可以新增加GDP184億元.

(3)設(shè)連續(xù)兩年建設(shè)用地總量分別為x1萬(wàn)畝和x2萬(wàn)畝,相應(yīng)年GDP分別為y1億元和y2億元,滿足y2-y1=1.
則y1=46x1-1223 ①
y2=46x2-1 223 ②
②-①得,y2-y1=46(x2-x1
即46(x2-x1)=1,
x2-x1=
1
46
≈0.022(萬(wàn)畝).
即年GDP每增加1億元,需增加建設(shè)用地約0.022萬(wàn)畝.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線與x軸交于點(diǎn)A(-2,0),B(4,0),與y軸交于點(diǎn)C(0,8),
(1)試求拋物線的解析式;
(2)設(shè)點(diǎn)D是該拋物線的頂點(diǎn),試求直線CD的解析式;
(3)若直線CD交x軸于點(diǎn)E,過(guò)點(diǎn)B作x軸的垂線,交直線CD于點(diǎn)F,將拋物線沿其對(duì)稱(chēng)軸上、下平移,使拋物線與線段EF總有公共點(diǎn).試探究:拋物線向上最多可平移多少個(gè)單位長(zhǎng)度?向下最多可平移多少個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c經(jīng)過(guò)A(-1,0)、B(3,0)、C(0,-3)三點(diǎn),對(duì)稱(chēng)軸與拋物線相交于點(diǎn)D、與直線BC相交于點(diǎn)E,連接DE.
(1)求該拋物線的解析式;
(2)平面直角坐標(biāo)系中是否存在一點(diǎn)R,使點(diǎn)R、D、B所成三角形和△DEB全等?若存在,求點(diǎn)R的坐標(biāo);若不存在,說(shuō)明理由;
(3)在拋物線上是否存在一點(diǎn)P,使△PEB的面積是△BDE的面積的一半?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知在平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2-bx+c(b>0)的圖象經(jīng)過(guò)點(diǎn)A(-1,b),與y軸相交于點(diǎn)B,且∠ABO的余切值為3.
(1)求點(diǎn)B的坐標(biāo);
(2)求這個(gè)函數(shù)的解析式;
(3)如果這個(gè)函數(shù)圖象的頂點(diǎn)為C,求證:∠ACB=∠ABO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣(mài)出210件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月少賣(mài)10件(每件售價(jià)不能高于65元).設(shè)每件商品的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷(xiāo)售利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫(xiě)出自變量x的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?
(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月的利潤(rùn)恰為2200元?根據(jù)以上結(jié)論,請(qǐng)你直接寫(xiě)出售價(jià)在什么范圍時(shí),每個(gè)月的利潤(rùn)不低于2200元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成長(zhǎng)方形零件PQMN,使長(zhǎng)方形PQMN的邊QM在BC上,其余兩個(gè)頂點(diǎn)P,N分別在AB,AC上.
(Ⅰ)求這個(gè)長(zhǎng)方形零件PQMN面積S的最大值;
(Ⅱ)在這個(gè)長(zhǎng)方形零件PQMN面積最大時(shí),能否將余下的材料△APN,△BPQ,△NMC剪下再拼成(不計(jì)接縫用料及損耗)與長(zhǎng)方形PQMN大小一樣的長(zhǎng)方形?若能,試給出一種拼法;若不能,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在直角坐標(biāo)系xOy中,A,B是x軸上兩點(diǎn),以AB為直徑的圓交y軸于點(diǎn)C,設(shè)過(guò)A、B、C三點(diǎn)的拋物線關(guān)系為y=x2-mx+n,若方程x2-mx+n=0兩根倒數(shù)和為-2.
(1)求n的值;
(2)求此拋物線的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知:拋物線y=
1
2
x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過(guò)B、C兩點(diǎn)的直線是y=
1
2
x-2,連接AC.
(1)B、C兩點(diǎn)坐標(biāo)分別為B(______,______)、C(______,______),拋物線的函數(shù)關(guān)系式為_(kāi)_____;
(2)判斷△ABC的形狀,并說(shuō)明理由;
(3)若△ABC內(nèi)部能否截出面積最大的矩形DEFC(頂點(diǎn)D、E、F、G在△ABC各邊上)?若能,求出在AB邊上的矩形頂點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ABCD的邊長(zhǎng)是4,E是AB邊上一點(diǎn)(E不與A、B重合),F(xiàn)是AD的延長(zhǎng)線上一點(diǎn),DF=2BE.四邊形AEGF是句型,其面積y隨BE的長(zhǎng)x的變化而變化且構(gòu)成函數(shù).
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)若上述(1)中是二次函數(shù),請(qǐng)用配方法把它轉(zhuǎn)化成y=a(x-h)2+k的形式,并指出當(dāng)x取何值時(shí),y取得最大(或最小)值,該值是多少?
(3)直接寫(xiě)出拋物線與x軸交點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案