如圖,已知二次函數(shù)y=ax2-bx-c的圖象與x軸交于A、B兩點(diǎn),當(dāng)時(shí)x=1,二次函數(shù)取得最大值4,且|OA|=-+2,
(1)求二次函數(shù)的解析式.
(2)已知點(diǎn)P在二次函數(shù)的圖象上,且有S△PAB=8,求點(diǎn)P的坐標(biāo).
【答案】分析:(1)由拋物線(xiàn)的頂點(diǎn)坐標(biāo)設(shè)出頂點(diǎn)形式,令y=0表示出x,確定出|OA|的長(zhǎng),由題意列出關(guān)于a的方程,求出方程的解得到a的值,即可確定出二次函數(shù)解析式;
(2)對(duì)于二次函數(shù),令y=0求出x的值,確定出A與B的坐標(biāo),求出|AB|的長(zhǎng),根據(jù)三角形PAB的面積求出P縱坐標(biāo)的絕對(duì)值為4,求出P縱坐標(biāo),代入二次函數(shù)求出x的值,確定出P橫坐標(biāo),即可求出P的坐標(biāo).
解答:解:(1)由題意,設(shè)二次函數(shù)為y=a(x-1)2+4,
令y=0,解得:x=1±,
故A的橫坐標(biāo)為x=1+,即|OA|=-+2=1+,
解得:a=-1,
則二次函數(shù)的解析式是
y=-(x-1)2+4,即y=-x2+2x+3;

(2)令y=0,得A、B坐標(biāo)為(3,0),(-1,0),
則|AB|=4,
設(shè)點(diǎn)P的坐標(biāo)為(x,y),
由題意S△PAB=8,得|y|=4,
則y=±4,即4=-x2+2x+3或-4=-x2+2x+3,
解得:x=1或x=1±2,
故所求點(diǎn)P的坐標(biāo)為(1,4),(1+2,-4),(1-2,-4).
點(diǎn)評(píng):此題考查了待定系數(shù)法求二次函數(shù)解析式,以及二次函數(shù)的性質(zhì),熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,1),直線(xiàn)y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(
5
2
,
13
4
),B點(diǎn)在y軸上,直線(xiàn)與x軸的交點(diǎn)為F,P為線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)P作x軸的垂線(xiàn)與這個(gè)二次函數(shù)的圖象交于E點(diǎn).
(1)求k,m的值及這個(gè)二次函數(shù)的解析式;
(2)設(shè)線(xiàn)段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)D為直線(xiàn)AB與這個(gè)二次函數(shù)圖象對(duì)稱(chēng)軸的交點(diǎn),在線(xiàn)段AB上是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的精英家教網(wǎng)三角形與△BOF相似?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(3,0)兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C.
(1)求此二次函數(shù)的解析式,并寫(xiě)出它的對(duì)稱(chēng)軸;
(2)若直線(xiàn)l:y=kx(k>0)與線(xiàn)段BC交于點(diǎn)D(不與點(diǎn)B,C重合),則是否存在這樣的直線(xiàn)l,使得以B,O,D為頂點(diǎn)的三角形與△BAC相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若直線(xiàn)l′:y=m與該拋物線(xiàn)交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,0),直線(xiàn)y=x+b與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B在y軸上.點(diǎn)P為線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)點(diǎn)P作x軸的垂線(xiàn)與該二次函數(shù)的圖象交于點(diǎn)E.
(1)求b的值及這個(gè)二次函數(shù)的關(guān)系式;
(2)設(shè)線(xiàn)段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)若點(diǎn)D為直線(xiàn)AB與該二次函數(shù)的圖象對(duì)稱(chēng)軸的交點(diǎn),則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標(biāo)軸交于點(diǎn)A(-1,0)和點(diǎn)C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個(gè)交點(diǎn)B的坐標(biāo).
(2)在上面所求二次函數(shù)的對(duì)稱(chēng)軸上存在一點(diǎn)P(2,-2),連接OP,找出x軸上所有點(diǎn)M的坐標(biāo),使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過(guò)A(2,0)、B(0,-6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對(duì)稱(chēng)軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積;
(3)若拋物線(xiàn)的頂點(diǎn)為D,在y軸上是否存在一點(diǎn)P,使得△PAD的周長(zhǎng)最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案