【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標原點,A、B兩點的坐標分別為(﹣3,0)、(0,4),拋物線經過點B,且頂點在直線x=上.
(1)求拋物線對應的函數(shù)關系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點A、B、O的對應點分別是D、C、E,當四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
(3)在(2)的條件下,連接CD,與拋物線的對稱軸交于點P,若點M是線段OB上的一個動點(點M與點O、B不重合),過點M作MN∥BD交x軸于點N,連接PM、PN,設OM的長為t,△PMN的面積為S,求出S和t的函數(shù)關系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時M點的坐標;若不存在,說明理由.
【答案】(1)(2)點C和點D都在所求拋物線上(3)當t=時,S取最大值是,此時,點M的坐標為(0,)
【解析】分析:(1)、通過點B(0,4)以及拋物線的對稱軸,求出函數(shù)關系式;(2)、通過勾股定理和菱形性質求出C、D兩點的坐標,代入函數(shù)關系式求證;(3)、通過C、D兩點的坐標,求出直線CD對應的函數(shù)關系式,從而求出點P的坐標,通過△OMN∽△OBD求得ON=,再通過面積求得S與t的函數(shù)關系式,從而求得最大值和M點的坐標.
詳解:(1)∵拋物線y=經過點B(0,4)∴c=4,
∵拋物線的對稱軸為,∴﹣=﹣,∴b=﹣;
∴所求函數(shù)關系式為;
(2)在Rt△ABO中,OA=3,OB=4,∴AB=5,∵四邊形ABCD是菱形,∴BC=CD=DA=AB=5,
∴C、D兩點的坐標分別是(5,4)、(2,0), 當x=5時,y=,
當x=2時,y=, ∴點C和點D都在所求拋物線上;
(3)設直線CD對應的函數(shù)關系式為y=kx+b, 則,解得:,∴,
當時,y,∴P(), ∵MN∥BD, ∴△OMN∽△OBD,
∴ 即 得ON=, 設對稱軸交x于點F,
則=(PF+OM)OF=×(+t)×, ∵,
, S△PMN= (0<t<4),
a=<0∴拋物線開口向下,S存在最大值. 由S△PMN=,
∴當t=時,S取最大值是,此時,點M的坐標為(0,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點,連接BM,MN,BN.∠BAD=60°,AC平分∠BAD,AC=2,BN的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數(shù)是( )
①AD是∠BAC的平分線;
②∠ADC=60°;
③點D在AB的中垂線上;
④BD=2CD.
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數(shù)y=2x+8的圖象分別交x軸、y軸于A、B兩點,過點A的直線交y軸正半軸于點M,且點M為線段OB的中點.
(1)求直線AM的函數(shù)解析式.
(2)試在直線AM上找一點P,使得S△ABP=S△AOB,求出點P的坐標.
(3)若點H為坐標平面內任意一點,在坐標平面內是否存在這樣的點H,使以A、B、M、H為頂點的四邊形是平行四邊形?若存在,請直接寫出所有點H的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點P.Q分別是邊長為4cm的等邊△ABC邊AB.BC上的點,點P從頂點A向B出發(fā),點Q從頂點B同時出發(fā)向C點運動,且它們的速度都為1cm/s,
(1)連接AQ.CP交于點M,則在P.Q運動的過程中,△ABQ與△CAP全等嗎?請說明理由;
(2)∠CMQ變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù).
(3)幾秒后△PBQ是直角三角形?
(4)如圖2,若點P.Q在運動到終點后繼續(xù)在射線AB.BC上運動,直線AQ.CP交點為M,則∠CMQ變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=x2+bx-1的圖象經過點(2,3).
(1)求這個函數(shù)的表達式;
(2)畫出它的圖象,并指出圖象的頂點坐標;
(3)觀察圖象,說明y隨x的增大是怎樣變化的?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中,正確的個數(shù)有( 。
①已知直角三角形的面積為2,兩直角邊的比為1:2,則斜邊長為;
②直角三角形的最大邊長為,最短邊長為1,則另一邊長為;
③在△ABC中,若∠A:∠B:∠C=1:5:6,則△ABC為直角三角形;
④等腰三角形面積為12,底邊上的高為4,則腰長為5.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形 ABCD 中,放入六個形狀大小相同的長方形,所標尺寸如圖所示, 則圖中陰影部分面積為( )
A. 44cm2B. 36cm2C. 96 cm2D. 84cm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公園計劃在一個半徑為a米的圓形空地區(qū)域建綠化區(qū),現(xiàn)有兩種方案:方案一:如圖1,將圓四等分,中間建兩條互相垂直的柵欄,陰影部分種植草坪;方案二:建成如圖2所示的圓環(huán),其中小圓半徑剛好為大圓半徑的一半,陰影部分種植草坪.
(1)哪種方案中陰影部分的面積大?大多少平方米(結果保留π)?
(2)如圖3,在方案二中的環(huán)形區(qū)域再圍一個最大的圓形區(qū)域種植花卉,求圖3中所有圓的周長之和(結果保留π).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com