【題目】如圖,給出下列四組條件:
①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E. 其中,能使△ABC≌△DEF 的條件共有( )
A. 1 組B. 2 組C. 3 組D. 4 組
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形BCDE中,∠C=∠BED=90°,∠B=60°,延長CD,BE得到Rt△ABC,已知CD=2,DE=1.
(1)求證:AB=2BC;
(2)求Rt△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形ABCO的對角線BO在x 軸上,若正方形ABCO的邊長為,點B在x負半軸上,反比例函數(shù)的圖象經(jīng)過C點.
(1)求該反比例函數(shù)的解析式;
(2)當函數(shù)值>-2時,請直接寫出自變量x的取值范圍;
(3)若點P是反比例函數(shù)上的一點,且△PBO的面積恰好等于正方形ABCO的面積,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在整式乘法的學習中,我們采用了構造幾何圖形的方法研究代數(shù)式的變形問題,借助直觀、形象的幾何圖形,加深對整式乘法的認識和理解,感悟代數(shù)與幾何的內在聯(lián)系,現(xiàn)有邊長分別為,的正方形Ⅰ號和Ⅱ號,以及長為,寬為的長方形Ⅲ號,卡片足夠多,我們可以選取適量的卡片拼接成幾何圖形.(卡片間不重疊、無縫隙)
根據(jù)已有的學習經(jīng)驗,解決下列問題:
(1)圖1是由1張Ⅰ號卡片、1張Ⅱ號卡片、2張Ⅲ號卡片拼接成的正方形,那么這個幾何圖形表示的等式是______;
(2)小聰想用幾何圖形表示等式,圖2給出了他所拼接的幾何圖形的一部分,請你補全圖形;
(3)小聰選取2張Ⅰ號卡片、2張Ⅱ號卡片、5張Ⅲ號卡片拼接成一個長方形,請你畫出拼接后的長方形,并直接寫出幾何圖形表示的等式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D、C、F、B四點在一條直線上,AB=DE,AC⊥BD,EF⊥BD,垂足分別為點C、點F,CD=BF.
求證:(1)△ABC≌△EDF;
(2)AB∥DE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC 和△關于直線 PQ 對稱,△和△關于直線 MN對稱.
(1)用無刻度直尺畫出直線MN;
(2)直線 MN 和 PQ 相交于點 O,試探究∠AOA2 與直線 MN,PQ 所夾銳角α的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1+∠2﹦180°,∠3﹦∠B,則DE∥BC,下面是王華同學的推導過程﹐請你幫他在括號內填上推導依據(jù)或內容.
證明:
∵∠1+∠2﹦180(已知),
∠1﹦∠4 (_________________),
∴∠2﹢_____﹦180°.
∴EH∥AB(___________________________________).
∴∠B﹦∠EHC(________________________________).
∵∠3﹦∠B(已知)
∴ ∠3﹦∠EHC(____________________).
∴ DE∥BC(__________________________________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農場去年種植了10畝地的南瓜,畝產量為2000kg,根據(jù)市場需要,今年該農場擴大了種植面積,并且全部種植了高產的新品種南瓜,設南瓜種植面積的增長率為 .
(1)則今年南瓜的種植面積為畝;(用含 的代數(shù)式表示)
(2)如果今年南瓜畝產量的增長率是種植面積的增長率的 ,今年南瓜的總產量為60000kg,求南瓜畝產量的增長率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知兩點(x1 , y1),(x2 , y2) 在函數(shù)y= - 的圖象上,當x1>x2>0時,下列結論正確的是( )
A.y1>y2>0
B.y1<y2<0
C.y2>y1>0
D.y2<y1<0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com