精英家教網 > 初中數學 > 題目詳情
如圖,石景山游樂園的觀覽車半徑為25m,已知觀覽車繞圓心O順時針做勻速運動,旋轉一周用12分鐘.某人從觀覽車的最低處(地面A處)乘車,問經過4分鐘后,此人距地面CD的高度是多少米?(觀覽車距最低處地面高度不計).
連接OA,由題意得OA⊥CD,

設旋轉4分鐘后,此人到達B處,連接OB,則∠AOB=360°×
4
12
=120°,
過B、O分別作BE⊥CD于E,OF⊥BE于F;
∴∠BFO=90°,
∴四邊形OFEA為矩形,
∴FE=OA=25,∠BOF=120°-90°=30°;
在Rt△BFO中,
∵OB=25,
∴BF=
1
2
OB=
25
2

∴BE=BF+FE=
25
2
+25=37.5,
∴人距地面37.5m.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

已知:如圖PT是⊙O的切線,T為切點,PAB是經過圓心O的割線.
(1)求證:∠PTA=∠BTO;
(2)若PT=4,PA=2,求sinB的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,在△ABC中,AB=10,AC=8,BC=6,經過點C且與邊AB相切的動圓與CA、CB分別相交于點P、Q,則線段PQ長度的最小值是( 。
A.4.75B.4.8C.5D.4
2

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,AE交⊙O于點F且與⊙O的切線CD互相垂直,垂足為D,連結AC,OC,CB.有下列結論:①∠1=∠2;②OCAE;③AF=OC;④△ADC△ACB.其中結論正確的是______(寫出序號).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,EF切⊙O于點D,過點B作BH⊥EF于點H,交⊙O于點C,連接BD.
(1)求證:BD平分∠ABH;
(2)如果AB=12,BC=8,求圓心O到BC的距離.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知:AB是⊙O的直徑,BC、CD分別是⊙O的切線,切點分別為B、D,E是BA和CD的延長線的交點.
(1)猜想AD與OC的位置關系,并加以證明;
(2)設AD•OC的積為S,⊙O的半徑為r,試探究S與r的關系;
(3)當r=2,sin∠E=
1
3
時,求AD和OC的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖AF是⊙O的直徑,以OA為直徑的⊙C與⊙O的弦AB相交于點D,DE⊥OB,垂足為E,求證:
(1)D是AB的中點;
(2)DE是⊙C的切線;
(3)BE•BF=2AD•ED.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

在平面直角坐標系中,點A的坐標為(0,4),點B的坐標為(-1,0),以線段AB上一點P為圓心作圓與OA,OB均相切,則點P的坐標為______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,PA是⊙O的切線,切點為A,割線PCB交⊙O于C、B兩點,半徑OD⊥BC,垂足為E,AD交PB于點F.
(1)PA與PF是否相等?______(填“是”或“否”);
(2)若F是PB的中點,CF=1.5,則切線PA的長為______.

查看答案和解析>>

同步練習冊答案