閱讀以下材料:
對于三個數(shù),用表示這三個數(shù)的平均數(shù),用表示這三個數(shù)中最小的數(shù).例如:
;;
解決下列問題:
(1)填空:       ;
(2)①如果,求;
②根據(jù)①,你發(fā)現(xiàn)了結論:
“如果,那么        (填的大小關系)”.
③運用②的結論,填空:
,則      
(3)填空:的最大值為        

(1)(2)①x=1;②; ③ (3)x≤0時,x+1;0<x≤,(x-1)2;x>,2-x

解析試題分析:(1)由題意,得
(2)①

 
; ③
(3)作出圖象.

由圖像,可知,當x≤0時,y=x+1在最下面,即值最;聯(lián)立y=2-x和y=(x-1)2,解得x=,或者x=,因為由圖可知所求點在第一象限內,所以當0<x≤時,y=(x-1)2在最下面,即值最。划攛>,y=2-x在最下面,即值最小。
考點:數(shù)的應用表示和函數(shù)的比較
點評:該題主要考查學生對函數(shù)圖像的代數(shù)意義的理解和應用,通過圖像看出在不同區(qū)間不同函數(shù)的大小。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀以下材料:
對于三個數(shù)a、b、c,用M(a,b,c)表示這三個數(shù)的平均數(shù),用min(a,b,c)表示這三個數(shù)中最小的數(shù).例如:M{-1,2,3}=
-1+2+3
3
=
4
3
;min{-1,2,3}=-1;min{-1,2,a}=a(a≤-1);-1(a>-1)
解決下列問題:
(1)填空:min{sin30°,cos45°,tan30°}=
 
,如果min{2,2x+2,4-2x}=2,則x的取值范圍為
 
≤x≤
 

(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x.
②根據(jù)①,你發(fā)現(xiàn)了結論“如果M{a,b,c}=min{a,b,c},那么
 
(填a,b,c的大小關系)”,
證明你發(fā)現(xiàn)的結論.
③運用②的結論,填空:若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},則x+y=
 

(3)在同一直角坐標系中作出函數(shù)y=x+1,y=(x+1)2,y=2-x的圖象(不需列表描點),通過觀察圖象,填空:min{x+1,(x-1)2,2-x}的最大值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀以下材料:
對于三個數(shù)a,b,c,用M{a,b,c}表示這三個數(shù)的平均數(shù),用min{a,b,c}表示這三個數(shù)中最小的數(shù).例如:
M{-1,2,3}=
-1+2+3
3
=
4
3
;min{-1,2,3}=-1;min{-1,2,a}=
a(a≤-1)
-1(a>-1)

解決下列問題:
(1)填空:
如果min{2,2x+2,4-2x}=2,則x的取值范圍為
 

(2)如果M{2,x+1,2x}=min{2,x+1,2x},求x.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀以下材料:對于三個數(shù)a,b,c,用M{a,b,c}表示這三個數(shù)的
平均數(shù),用min{a,b,c}表示這三個數(shù)中最小的數(shù).例如:M{-1,2,3}=
-1+2+3
3
=
4
3
;min{-1,2,3}=-1;min{-1,2,a}=
a(a≤-1)
-1(a>-1)
解決下列問題:
(1)min{
1
2
,
2
2
,
3
2
}
 
若min{2,2x+2,4-2x}=2,則x的范圍為
 
;
(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;
②根據(jù)①,你發(fā)現(xiàn)了結論“如果M{a,b,c}=min{a,b,c},那么
 
(填a,b,c的大小關系)”.證明你發(fā)現(xiàn)的結論;
③運用②的結論,填空:
若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},則x+y=
 

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省江陰暨陽九年級上學期期末考試數(shù)學試卷(解析版) 題型:解答題

閱讀以下材料:

對于三個數(shù),用表示這三個數(shù)的平均數(shù),用表示這三個數(shù)中最小的數(shù).例如:

;;

解決下列問題:

(1)填空:       

(2)①如果,求

②根據(jù)①,你發(fā)現(xiàn)了結論:

“如果,那么        (填的大小關系)”.

③運用②的結論,填空:

,則      

(3)填空:的最大值為        

 

查看答案和解析>>

同步練習冊答案