【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn)A(﹣4,﹣2)和Ba,4.

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

2)根據(jù)圖象回答,當(dāng)x在什么范圍內(nèi)時(shí),一次函數(shù)的值大于反比例函數(shù).

【答案】1y=x+2,B2,4);(2-4x0x2

【解析】

1)設(shè)反比例函數(shù)的解析式為k≠0),把A點(diǎn)坐標(biāo)代入即可得出k的值,進(jìn)而得出反比例函數(shù)的解析式,再把B點(diǎn)坐標(biāo)代入即可得出a的值,利用待定系數(shù)法即可得出一次函數(shù)的解析式;

2)直接根據(jù)兩函數(shù)的交點(diǎn)即可得出結(jié)論.

解:(1)設(shè)反比例函數(shù),將A(﹣4,﹣2)代入中得:k=8,

Ba,4)代入中得:,

B24);

設(shè)一次函數(shù),將A(﹣4,﹣2),B2,4)代入得:

,

解得:,

∴一次函數(shù)解析式為:

2)根據(jù)題意,∵點(diǎn)A(﹣4,﹣2),B24),

則由圖像可知,

當(dāng)時(shí),x的取值范圍是:4x0x2;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電生產(chǎn)廠家去年銷往農(nóng)村的某品牌洗碗機(jī)每臺(tái)的售價(jià)(元)與月份之間滿足函數(shù)關(guān)系,去年的月銷售量戶(萬臺(tái))與月份之間成一次函數(shù)關(guān)系,其中兩個(gè)月的銷售情況如表:

月份:

1月

5月

銷售量:

3.9萬臺(tái)

4.3萬臺(tái)

(1)求該品牌洗碗機(jī)在去年哪個(gè)月銷往農(nóng)村的銷售金額最大?最大是多少?(提示:銷售金額=銷量×售價(jià))

(2)經(jīng)統(tǒng)計(jì)和計(jì)算.得到此洗碗機(jī)在農(nóng)村地區(qū)的銷售數(shù)據(jù),如表:

銷售數(shù)據(jù)信息表

售價(jià)(元/臺(tái))

銷量(萬臺(tái))

補(bǔ)貼金額(萬元)

去年12月份

2000

5

/

今年2月份

/

今年3月份

312

由于國(guó)家實(shí)施“家電下鄉(xiāng)政策”,所以今年3月份國(guó)家按該產(chǎn)品售價(jià)的13%給子財(cái)政補(bǔ)貼,共補(bǔ)貼了312萬元,從表格中,我們可以看出:今年3月份與今年2月份相比較,售價(jià)保持不變,但銷量增加了1.5萬臺(tái).今年2月份與去年12月份相比較,售價(jià)下降了%,銷量下降了1.5%;請(qǐng)用表示表格中的,,并根據(jù)已知條件求出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐:

問題情境:在一次綜合實(shí)踐活動(dòng)課上,同學(xué)們以菱形為對(duì)象,研究菱形旋轉(zhuǎn)中的問題:已知,在菱形, 為對(duì)角線, ,,將菱形繞頂點(diǎn)順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為(單位),旋轉(zhuǎn)后的菱形為,在旋轉(zhuǎn)探究活動(dòng)中提出下列問題,請(qǐng)你幫他們解決.

觀察證明:

(1)如圖1,若旋轉(zhuǎn)角,相交于點(diǎn),相交于點(diǎn),請(qǐng)說明線段的數(shù)量關(guān)系;

操作計(jì)算:

(2)如圖2,連接,菱形旋轉(zhuǎn)的過程中,當(dāng)互相垂直時(shí), 的長(zhǎng)為 ;

(3)如圖3,若旋轉(zhuǎn)角,分別連接,,過點(diǎn)分別作,,連接,菱形旋轉(zhuǎn)的過程中,發(fā)現(xiàn)在中存在長(zhǎng)度不變的線段,請(qǐng)求出長(zhǎng)度;

操作探究:

(4)如圖4,(3)的條件下,請(qǐng)判斷以,,三條線段長(zhǎng)度為邊的三角形是什么特殊三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)BE、C、F在同一條直線上,∠A= D,要使△ABC∽△DEF,還需添加一個(gè)條件,則添加的條件可以是_________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代著名數(shù)學(xué)經(jīng)典,其中對(duì)勾股定理的論述比西方早一千多年,其中有這樣一個(gè)問題:今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長(zhǎng)一尺.問徑幾何?其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長(zhǎng)1.如圖,已知弦尺,弓形高寸,(注:1=10寸)問這塊圓柱形木材的直徑是(

A.13B.6.5C.20D.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是的中點(diǎn),CE⊥AB于點(diǎn)E,過點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CE,CB于點(diǎn)P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心,其中結(jié)論正確的是________(只需填寫序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家計(jì)劃從廠家采購(gòu)空調(diào)和冰箱兩種產(chǎn)品共20臺(tái),空調(diào)的采購(gòu)單價(jià)y1(元/臺(tái))與采購(gòu)數(shù)量x1(臺(tái))滿足y1=﹣20x1+15000x1≤20,x1為整數(shù));冰箱的采購(gòu)單價(jià)y2(元/臺(tái))與采購(gòu)數(shù)量x2(臺(tái))滿足y2=﹣10x2+13000x2≤20,x2為整數(shù)).

1)經(jīng)商家與廠家協(xié)商,采購(gòu)空調(diào)的數(shù)量不少于冰箱數(shù)量的,且空調(diào)采購(gòu)單價(jià)不低于1200元,問該商家共有幾種進(jìn)貨方案?

2)該商家分別以1760/臺(tái)和1700/臺(tái)的銷售單價(jià)售出空調(diào)和冰箱,且全部售完.在(1)的條件下,問采購(gòu)空調(diào)多少臺(tái)時(shí)總利潤(rùn)最大?并求最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,的平分線相交于點(diǎn)E,過點(diǎn)EAC于點(diǎn)F,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一塊直角三角板ABC按如圖放置,頂點(diǎn)A的坐標(biāo)為(01),直角頂點(diǎn)C的坐標(biāo)為(﹣3,0),∠B=30°,則點(diǎn)B的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊(cè)答案