【題目】如圖,在中,,,,可求得______.
如圖,直徑為1個單位長度的圓從原點O沿數(shù)軸向右滾動一周,圓上的一點滾動時與點O重合由原點到達點,則的長度是______.
如圖,是一個等腰直角三角形,它的面積是2,把它沿著斜邊的高線剪開拼成如圖正方形EBDC,則這個正方形的邊長是______.
請你在的網(wǎng)格圖中每個小正方形邊長均為,畫出一條長為的線段;
學習了實數(shù)后,我們知道數(shù)軸上的點與實數(shù)是一一對應的關系那么請你在圖的數(shù)軸上畫出表示的點保留作圖痕跡.
【答案】(1);(2);(3);(4)詳見解析;(5)詳見解析.
【解析】
(1)直接運用勾股定理求出AB即可;
(2)直徑為1個單位長度的圓從原點O沿數(shù)軸向右滾動一周,說明OO′之間的距離為圓的周長=π,由此即可確定O′點對應的數(shù);
(3)是一個等腰直角三角形,它的面積是2,可以得出腰為2,等腰直角三角形斜邊的高線為中線,再通過勾股定理可以得出結論;
(4)畫出一條長為的線段問題,可由已知圖形及勾股定理得出可以做一個兩直角邊為3和1的三角形,其斜邊長為;
(5)在數(shù)軸上找到表示-的點問題()2=22+12,所以應是兩直角邊為2,1的直角三角形的斜邊長,再注意符號數(shù)軸正負邊.
解:在中,,,,
;
故答案為:;
直徑為1個單位長度的圓從原點O沿數(shù)軸向右滾動一周,圓上的一點滾動時與點O重合由原點到達點,則的長度是,
故答案為:;
這個正方形的邊長是,
故答案為:;
如圖4所示,線段AB即為所求;
如圖5所示.
科目:初中數(shù)學 來源: 題型:
【題目】為配合全市“禁止焚燒秸稈”工作,某學校舉行了“禁止焚燒秸稈,保護環(huán)境,從我做起”為主題的演講比賽.賽后組委會整理參賽同學的成績,并制作了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
分數(shù)段(分數(shù)為x分) | 頻數(shù) | 百分比 |
60≤x<70 | 8 | 20% |
70≤x<80 | a | 30% |
80≤x≤90 | 16 | b% |
90≤x<100 | 4 | 10% |
請根據(jù)圖表提供的信息,解答下列問題:
(1)表中的a= , b=;請補全頻數(shù)分布直方圖;
(2)若用扇形統(tǒng)計圖來描述成績分布情況,則分數(shù)段70≤x<80對應扇形的圓心角的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(題文)如圖1,在四邊形ABCD中,DC∥AB,AD=BC,BD平分∠ABC.
(1)求證:AD=DC;
(2)如圖2,在上述條件下,若∠A=∠ABC=60°,過點D作DE⊥AB,過點C作CF⊥BD,垂足分別為E、F,連接EF.判斷△DEF的形狀并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=kx+b經(jīng)過點A(0,6),且平行于直線y=-2x.
(1)求該函數(shù)的解析式,并畫出它的圖象;
(2)如果這條直線經(jīng)過點P(m,2),求m的值;
(3)若O為坐標原點,求直線OP的解析式;
(4)求直線y=kx+b和直線OP與坐標軸所圍成的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某教育網(wǎng)站對下載資源規(guī)定如下:若注冊VIP用戶,則下載每份資源收元,另外每年收500元的VIP會員費,若注冊普通用戶,則下載每份資源收元,不收其它費用
分別寫出注冊VIP用戶的收費元和注冊普通用戶元與下載數(shù)量份之間的函數(shù)關系式
某學校每年要下載1500份資源,那么注冊哪種用戶比較合算?
一年內下載多少份資源是兩種用戶收費一樣?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從邊長為 a 的正方形內去掉一個邊長為 b 的小正方形(如圖1),然后將剩余部分剪拼成一個矩形(如圖2),上述操作所能驗證的等式是( )
A. (a-b)2=a2-2ab+b2 B. a2+ab=a (a+b) C. (a+b)2=a2+2ab+b2 D. a2-b2=(a+b)(a-b)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為獎勵在演講比賽中獲獎的同學,班主任派學習委員小明為獲獎同學買獎品,要求每人一件,小明到文具店看了商品后,決定獎品在鋼筆和筆記本中選擇,若買4個筆記本和2支鋼筆,則需86元;若買3個筆記本和1支鋼筆,則需57元.
(1)求購買一個筆記本、一支鋼筆分別為多少元;
(2)售貨員提示,買鋼筆有優(yōu)惠,具體方法是:如果買鋼筆超過10支,那么超出部分可以享受8折優(yōu)惠.買15支鋼筆,20個筆記本,一共需要花多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結論共有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com