【題目】如圖,RtABC中,C90°,AC10,BC16.動點(diǎn)P以每秒3個單位的速度從點(diǎn)A開始向點(diǎn)C移動,直線l從與AC重合的位置開始,以相同的速度沿CB方向平行移動,且分別與CBAB邊交于E,F兩點(diǎn),點(diǎn)P與直線l同時出發(fā),設(shè)運(yùn)動的時間為t秒,當(dāng)點(diǎn)P移動到與點(diǎn)C重合時,點(diǎn)P和直線l同時停止運(yùn)動.在移動過程中,將PEF繞點(diǎn)E逆時針旋轉(zhuǎn),使得點(diǎn)P的對應(yīng)點(diǎn)M落在直線l上,點(diǎn)F的對應(yīng)點(diǎn)記為點(diǎn)N,連接BN,當(dāng)BNPE時,t的值為_____

【答案】

【解析】

NHBCH.首先證明PECNEBNBE,推出EHBH,根據(jù)cos∠PECcos∠NEB,推出,由此構(gòu)建方程解決問題即可.

解:作NHBCH

EFBCPEFNEF,

∴∠FECFEB90°

∵∠PEC+∠PEF90°,NEB+∠FEN90°,

∴∠PECNEB

PE∥BN,

∴∠PECNBE,

∴∠NEBNBE

NENB,

HNBE

EHBH,

∴cos∠PECcos∠NEB

,

EF∥AC

,

EFEN (163t),

整理得:63t2960t+16000,

解得t (舍棄),

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校組織健康知識競賽,每班參加競賽的人數(shù)相同,成績?yōu)?/span>,,,四個等級,其中相應(yīng)等級的得分依次記為100分,90分,80分,70分,其中100分和90分為優(yōu)秀.學(xué)校將八年級一班和二班的成績整理并繪制成如下的統(tǒng)計圖與統(tǒng)計表.

一班競賽成績統(tǒng)計圖

二班競賽成績統(tǒng)計圖

一班和二班競賽成績統(tǒng)計表(部分空缺)

成績

班級

眾數(shù)

中位數(shù)

優(yōu)秀率

平均分

一班

90

87.6

二班

80

請根據(jù)以上圖表的信息解答下列問題:

1)求,,的值.

2)若全校共有750名學(xué)生參加競賽,估計成績優(yōu)秀的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD的頂點(diǎn)A在y軸上,頂點(diǎn)D在反比例函數(shù)y=x>0的圖像上,已知點(diǎn)B的坐標(biāo)是,,則k的值為( )

A10 B.8 C.6 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于Am,6),B3,n)兩點(diǎn).

1)求一次函數(shù)的解析式;

2)求的面積;

3)根據(jù)圖象直接寫出x的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于、兩點(diǎn),點(diǎn)在原點(diǎn)的左側(cè),點(diǎn)的坐標(biāo)為(),與軸交于),點(diǎn)是直線下方的拋物線上一動點(diǎn).

1)求這個二次函數(shù)的表達(dá)式.

2)連結(jié)、,并把△沿邊翻折,得到四邊形, 那么是否存在點(diǎn),使四邊形為菱形?若存在,請求出此時點(diǎn)的坐標(biāo);若不存在,請說明理由.

3)當(dāng)點(diǎn)運(yùn)動到什么位置時,四邊形的面積最大并求出此時點(diǎn)的坐標(biāo)和四邊形的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)行垃圾分類和垃圾資源化利用,關(guān)系廣大人民群眾生活環(huán)境,關(guān)系節(jié)約使用資源,也是社會文明水平的一個重要體現(xiàn).某環(huán)保公司研發(fā)了甲、乙兩種智能設(shè)備,可利用最新技術(shù)將干垃圾進(jìn)行分選破碎制成固化成型燃料棒,干垃圾由此變身新型清潔燃料.某垃圾處理廠從環(huán)保公司購入以上兩種智能設(shè)備若干,已知購買甲型智能設(shè)備花費(fèi)萬元,購買乙型智能設(shè)備花費(fèi)萬元,購買的兩種設(shè)備數(shù)量相同,且兩種智能設(shè)備的單價和為萬元.

求甲、乙兩種智能設(shè)備單價;

垃圾處理廠利用智能設(shè)備生產(chǎn)燃料棒,并將產(chǎn)品出售.已知燃料棒的成本由人力成本和物資成本兩部分組成,其中物資成本占總成本的,且生產(chǎn)每噸燃料棒所需人力成本比物資成本的倍還多.調(diào)查發(fā)現(xiàn),若燃料棒售價為每噸元,平均每天可售出噸,而當(dāng)銷售價每降低元,平均每天可多售出.垃圾處理廠想使這種燃料棒的銷售利潤平均每天達(dá)到元,且保證售價在每噸元基礎(chǔ)上降價幅度不超過,求每噸燃料棒售價應(yīng)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“京張高鐵”是2022年北京冬奧會的重要交通基礎(chǔ)設(shè)施,考慮到不同路段的特殊情況,將根據(jù)不同的運(yùn)行區(qū)間設(shè)置不同的時速.其中北京北站到清河站分為地下的清華園隧道12千米和地上的清河段10千米兩部分,地下與地上的運(yùn)行速度之比為,地下比地上的運(yùn)行時間多2分鐘,求通過地下的清華園隧道所需的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過點(diǎn)A(1,3)、B(3,m).

(1)求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);

(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線AC、BD相交于點(diǎn)O,點(diǎn)E在BD的延長線上,且△EAC是等邊三角形.

(1)求證:四邊形ABCD是菱形.

(2)若AC=8,AB=5,求ED的長.

查看答案和解析>>

同步練習(xí)冊答案