如圖(1),△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,AD⊥MN于點(diǎn)D,BE⊥MN于點(diǎn)E.
(1)請說明:△ADC≌△CEB.
(2)請你探索線段DE,AD,EB間的等量關(guān)系,并說明理由;
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(2)的位置時(shí),其它條件不變,線段DE,AD,EB又有怎樣的等量關(guān)系?(不必說理由).

解:(1)理由:因?yàn)椤螦CD+∠ACB+∠BCE=180°,∠ACB=90°,
所以∠ACD+∠BCE=90°.
又AD⊥MN,BE⊥MN,則∠ADC=∠CEB=90°,∠DAC+∠ACD=90°.
故∠DAC=∠ECB
而AC=CB.所以△ADC≌△CEB(AAS).

(2)等量關(guān)系:DE=AD+EB.
理由:由(1)知△ADC≌△CEB.則AD=CE,DC=EB.
因?yàn)镈E=CE+DC,所以DE=AD+EB.

(3)等量關(guān)系:DE=AD-EB.
分析:(1)由全等直角三角形的判定定理AAS來證明△ADC≌△CEB;
(2)利用(1)的△ADC≌△CEB的對應(yīng)邊相等求得AD=CE,DC=EB;而DE=CE+DC,所以DE=AD+EB;
(3)利用(2)的解答思路可以直接回答DE=AD-EB.
點(diǎn)評:本題考查了等腰直角三角形、全等三角形的判定與性質(zhì).判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等(直角三角形除外),判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,等邊三角形ABC中,D、E分別是BC、AC上的點(diǎn),且AE=CD.
(1)求證:AD=BE;
(2)求:∠BFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰直角△ABC中,∠ABC=90°,AB=BC,AD∥BC,E是AB的中點(diǎn),BE=AD.
(1)試說明:CE⊥BD;
(2)線段AC與ED之間存在什么關(guān)系?為什么?
(3)判斷△BDC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,△DEF是由△ABC平移得到的,若BC=6cm,E是BC的中點(diǎn),則平移的距離是
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等邊△ABC中,線段AM為BC邊上的中線.動點(diǎn)D在直線AM上時(shí),以CD為一邊且在CD的下精英家教網(wǎng)方作等邊△CDE,連接BE.
(1)填空:當(dāng)點(diǎn)D運(yùn)動到點(diǎn)M時(shí),∠ACE=
 
度;
(2)當(dāng)點(diǎn)D在線段AM上(點(diǎn)D不運(yùn)動到點(diǎn)A)時(shí),求證:△ADC≌△BEC;
(3)若AB=8,以點(diǎn)C為圓心,以5為半徑作⊙C與直線BE相交于點(diǎn)P、Q兩點(diǎn),在點(diǎn)D運(yùn)動的過程中(點(diǎn)D與點(diǎn)A重合除外),試求PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,圓內(nèi)接△ABC中,AB=BC=CA,OD、OE為⊙O的半徑,OD⊥BC于點(diǎn)F,OE⊥AC于點(diǎn)G,陰影部分四邊形OFCG的面積是△ABC的面積的
 

查看答案和解析>>

同步練習(xí)冊答案