【題目】某小區(qū)計(jì)劃購(gòu)進(jìn)AB兩種樹(shù)苗,已知1A種樹(shù)苗和2B種樹(shù)苗共20元,且A種樹(shù)苗比B種樹(shù)苗每株多2元.

1A、B兩種樹(shù)苗每株各多少元?

2)若購(gòu)買A、B兩種樹(shù)苗共360株,并且A種樹(shù)苗的數(shù)量不少于B種樹(shù)苗數(shù)量的一半,請(qǐng)你設(shè)計(jì)一種費(fèi)用最省的購(gòu)買方案.

【答案】(1)A種樹(shù)苗每株8元,B種樹(shù)苗每株6元;(2) 購(gòu)買A種樹(shù)苗120株,B種樹(shù)苗240株,總費(fèi)用最少為2400元.

【解析】

(1)設(shè)B種樹(shù)苗每株x元,則A種樹(shù)苗根據(jù)題意每株(x+2)元,由1A樹(shù)苗和2B樹(shù)苗的價(jià)格和為20元建立方程求出其解即可;
(2)設(shè)A種樹(shù)苗的數(shù)量為y株,則B種樹(shù)苗的數(shù)量為(360-y)株,總費(fèi)用為W元,根據(jù)總費(fèi)用=兩種樹(shù)苗的費(fèi)用之和建立函數(shù)關(guān)系式,由一次函數(shù)的性質(zhì)就可以求出結(jié)論.

解:(1)設(shè)B種樹(shù)苗每株x元,則A種樹(shù)苗每株(x+2)元,由題意得:
x+2+2x=20,
解得:x=6
A種樹(shù)苗每株為8元.
答:A種樹(shù)苗每株8元,B種樹(shù)苗每株6元;
(2)設(shè)A種樹(shù)苗的數(shù)量為y株,則B種樹(shù)苗為(360-y)株,總費(fèi)用為W元,由題意得:
W=8y+6360-y),
=2y+2160
k=20,W有最大值,

,

y120,
y=120時(shí),W最小=2400,
∴購(gòu)買A種樹(shù)苗120株,B種樹(shù)苗240株,總費(fèi)用最少為2400元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,點(diǎn)EBC上的一點(diǎn),EC2BE,點(diǎn)DAC的中點(diǎn).若ABC的面積SABC12,則SADFSBEF_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市預(yù)測(cè)某飲料會(huì)暢銷、先用1800元購(gòu)進(jìn)一批這種飲料,面市后果然供不應(yīng)求,又用8100元購(gòu)進(jìn)這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.

1)第一批飲料進(jìn)貨單價(jià)多少元?

2)若兩次進(jìn)飲料都按同一價(jià)格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價(jià)至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料并解決有關(guān)問(wèn)題:

我們知道,|m|= .現(xiàn)在我們可以用這一結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的代

數(shù)式,如化簡(jiǎn)代數(shù)式|m+1|+|m2|時(shí),可令 m+1=0 m2=0,分別求得 m=1m=2(稱﹣1,2 分別為|m+1|與|m2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi), 零點(diǎn)值 m=1 m=2 可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下 3 種情況:

1m<﹣1;(2)﹣1m2;(3m2.從而化簡(jiǎn)代數(shù)式|m+1|+|m2| 可分以下 3 種情況:

1)當(dāng) m<﹣1 時(shí),原式=﹣(m+1)﹣(m2=2m+1;

2)當(dāng)﹣1m2 時(shí),原式=m+1﹣(m2=3;

3)當(dāng) m2 時(shí),原式=m+1+m2=2m1

綜上討論,原式=

通過(guò)以上閱讀,請(qǐng)你解決以下問(wèn)題:

1)分別求出|x5|和|x4|的零點(diǎn)值;

2)化簡(jiǎn)代數(shù)式|x5|+|x4|;

3)求代數(shù)式|x5|+|x4|的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形,,按如圖的方式放置點(diǎn),,,和點(diǎn),,分別在直線x軸上,則點(diǎn)的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AD是△ABC的角平分線,⊙O經(jīng)過(guò)A、B、D三點(diǎn),過(guò)點(diǎn)B作BE∥AD,交⊙O于點(diǎn)E,連接ED.

(1)求證:ED∥AC;
(2)連接AE,試證明:ABCD=AEAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y= +bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C(0,﹣3).

(1)求拋物線的解析式;
(2)D是y軸正半軸上的點(diǎn),OD=3,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過(guò)A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,
①試說(shuō)明EF是圓的直徑;
②判斷△AEF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(6,c)三點(diǎn),其中a,b,c滿足關(guān)系式|a-2|+(b-3)2+=0,

(1)求A.B.C的坐標(biāo);

(2)求三角形ABC的面積;

(3)在y軸上是否存在點(diǎn)P,使三角形APC的面積與三角形ABC的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某種車的耗油量,我們對(duì)這種車在高速公路以100km/h的速度做了耗油試驗(yàn),并把試驗(yàn)的數(shù)據(jù)記錄下來(lái),制成下表:

汽車行駛時(shí)間t(h)

0

1

2

3

油箱剩余油量Q(L)

100

94

88

82

1)根據(jù)上表的數(shù)據(jù),你能用t表示Q嗎?試一試;

2)汽車行駛6h后,油箱中的剩余油量是多少?

3)若汽車油箱中剩余油量為52L,則汽車行駛了多少小時(shí)?

4)若該種汽車油箱只裝了36L汽油,汽車以100km/h的速度在一條全長(zhǎng)700公里的高速公路上勻速行駛,請(qǐng)問(wèn)它在中途不加油的情況下能從高速公路起點(diǎn)開(kāi)到高速公路終點(diǎn)嗎,為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案