今年,6月12日為端午節(jié)。在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價為2元的粽子的銷售情況。請根據(jù)小麗提供的信息,解答小華和小明提出的問題。

(1)小華的問題解答:    ;
(2)小明的問題解答:    。
解:(1)當(dāng)定價為4元時,能實現(xiàn)每天800元的銷售利潤。
(2)800元的銷售利潤不是最多,當(dāng)定價為4.8元時,每天的銷售利潤最大。

試題分析:(1)設(shè)定價為x元,利潤為y元,則銷售量為:
由題意得,
當(dāng)y=800時,,解得:x=4或x=6。
∵售價不能超過進(jìn)價的240%,∴x≤2×240%,即x≤4.8!鄕=4。
即小華問題的解答為:當(dāng)定價為4元時,能實現(xiàn)每天800元的銷售利潤。
(2)由(1),
∵-100<0,∴函數(shù)圖象開口向下,且對稱軸為x=5,
∵x≤4.8,∴當(dāng)x=4.8時函數(shù)能取最大值,且。
故小明的問題的解答為:800元的銷售利潤不是最多,當(dāng)定價為4.8元時,每天的銷售利潤最大。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知拋物線C經(jīng)過原點,對稱軸與拋物線相交于第三象限的點M,與x軸相交于點N,且。

(1)求拋物線C的解析式;
(2)將拋物線C繞原點O旋轉(zhuǎn)1800得到拋物線,拋物線與x軸的另一交點為A,B為拋物線上橫坐標(biāo)為2的點。
①若P為線段AB上一動點,PD⊥y軸于點D,求△APD面積的最大值;
②過線段OA上的兩點E、F分別作x軸的垂線,交折線O-B-A于E1、F1,再分別以線段EE1、FF1為邊作如圖2所示的等邊△AE1E2、等邊△AF1F2,點E以每秒1個長度單位的速度從點O向點A運(yùn)動,點F以每秒1個長度單位的速度從點A向點O運(yùn)動,當(dāng)△AE1E2有一邊與△AF1F2的某一邊在同一直線上時,求時間t的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線向左平移1個單位,再向下平移3個單位后所得拋物線的解析式為【   】
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

“綠色出行,低碳健身”已成為廣大市民的共識.某旅游景點新增了一個公共自行車停車場,6:00至18:00市民可在此借用自行車,也可將在各停車場借用的自行車還于此地.林華同學(xué)統(tǒng)計了周六該停車場各時段的借、還自行車數(shù),以及停車場整點時刻的自行車總數(shù)(稱為存量)情況,表格中x=1時的y值表示7:00時的存量,x=2時的y值表示8:00時的存量…依此類推.他發(fā)現(xiàn)存量y(輛)與x(x為整數(shù))滿足如圖所示的一個二次函數(shù)關(guān)系.
時段
x
還車數(shù)(輛)
借車數(shù)(輛)
存量y(輛)
6:00﹣7:00
1
45
5
100
7:00﹣8:00
2
43
11
n





根據(jù)所給圖表信息,解決下列問題:
(1)m=   ,解釋m的實際意義:   ;
(2)求整點時刻的自行車存量y與x之間滿足的二次函數(shù)關(guān)系式;
(3)已知9:00~10:00這個時段的還車數(shù)比借車數(shù)的3倍少4,求此時段的借車數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,對于下列結(jié)論:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正確的個數(shù)是【   】
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)是二次函數(shù)的是【   】
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)y=x2+2mx+2,當(dāng)x>2時,y的值隨x值的增大而增大,則實數(shù)m的取值范圍是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,二次函數(shù)y=ax2+bx+c的圖象中,王剛同學(xué)觀察得出了下面四條信息:(1)b24ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中錯誤的有
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

銅仁市某電解金屬錳廠從今年1月起安裝使用回收凈化設(shè)備(安裝時間不計),這樣既改善了環(huán)境,又降低了原料成本,根據(jù)統(tǒng)計,在使用回收凈化設(shè)備后的1至x月的利潤的月平均值w(萬元)滿足w=10x+90.
(1)設(shè)使用回收凈化設(shè)備后的1至x月的利潤和為y,請寫出y與x的函數(shù)關(guān)系式.
(2)請問前多少個月的利潤和等于1620萬元?

查看答案和解析>>

同步練習(xí)冊答案