【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A(﹣2,1),B1n)兩點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)根據(jù)圖象寫出使一次函數(shù)的值>反比例函數(shù)的值的x的取值范圍.

【答案】1)反比例函數(shù)為;一次函數(shù)解析式為y=﹣x1;(2x<﹣20x1

【解析】

1)由A的坐標(biāo)易求反比例函數(shù)解析式,從而求B點(diǎn)坐標(biāo),進(jìn)而求一次函數(shù)的解析式;

2)觀察圖象,找出一次函數(shù)的圖象在反比例函數(shù)的圖象上方時(shí),x的取值即可.

解:(1)把A(﹣2,1)代入y,

m=﹣2

即反比例函數(shù)為y=﹣,

B1,n)代入y=﹣,解得n=﹣2,

B1,﹣2),

A(﹣2,1),B1,﹣2)代入ykx+b,得

解得k=﹣1,b=﹣1,

所以y=﹣x1

2)由圖象可知:當(dāng)一次函數(shù)的值>反比例函數(shù)的值時(shí),x<﹣20x1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點(diǎn)的延長線上,點(diǎn)上,且

(1)求證:的切線;

(2)已知,點(diǎn)的中點(diǎn),,垂足為,于點(diǎn),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過點(diǎn)A3,0),B,0),與y軸交于點(diǎn)C,點(diǎn)P是拋物線在第四象限內(nèi)的一點(diǎn).

1)求拋物線解析式;

2)點(diǎn)D是線段OC的中點(diǎn),OP⊥AD,點(diǎn)E是射線OP上一點(diǎn),OE=AD,求DE的長;

3)連接CP,AP,是否存在點(diǎn)P,使得OP平分四邊形ABCP的面積?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是半圓的半徑上的動點(diǎn),作.點(diǎn)是半圓上位于左側(cè)的點(diǎn),連結(jié)交線段,且

(1) 求證:⊙O的切線.

(2) ⊙O的半徑為,,設(shè)

關(guān)于的函數(shù)關(guān)系式.

當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(3分)如圖,正方形ABCD的邊長為3cm,動點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動,到達(dá)A點(diǎn)停止運(yùn)動;另一動點(diǎn)Q同時(shí)從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動,到達(dá)A點(diǎn)停止運(yùn)動設(shè)P點(diǎn)運(yùn)動時(shí)間為x(s),BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是(

A B C D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,ABC中,∠C>B.

(1)尺規(guī)作圖:作∠ACM=B,且使CM與邊AB交于點(diǎn)D(保留作圖痕跡,不寫作法和證明);

(2)(1)中所形成的圖形中,若AD=2BD=4,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知點(diǎn)P為⊙O 外一點(diǎn),PA、PB是⊙O的切線,切點(diǎn)分別是A、B,連接OPAB于點(diǎn)C,交⊙O于點(diǎn)D,若PA=3cm, APB=60°,則下列結(jié)論正確的有(

ABOP;②AC2=PC·OC;③若連接AD,BD,則∠ADB=120°;④PA,PB與劣弧AB圍成的圖形的面積是

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)新建成的住宅樓主體工程已經(jīng)竣工,只剩下樓體外表需貼瓷磚,已知樓體外表的面積為

1)寫出每塊瓷磚的面積與所需的瓷磚塊數(shù)(塊)之間的函數(shù)關(guān)系式;

2)為了使住宅樓的外觀更漂亮,開發(fā)商決定采用灰、白、藍(lán)三種顏色的瓷磚,每塊瓷磚的面積都是,灰、白、藍(lán)瓷磚使用比例是,則需要三種瓷磚各多少塊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形 ABCD 為矩形.

(1)如圖1,ECD上一定點(diǎn),在AD上找一點(diǎn)F,使得矩形沿著EF折疊后,點(diǎn)D落在 BC邊上(尺規(guī)作圖,保留作圖痕跡);

(2)如圖2,在ADCD邊上分別找點(diǎn)M,N,使得矩形沿著MN折疊后BC的對應(yīng)邊B' C'恰好經(jīng)過點(diǎn)D,且滿足B' C' ⊥BD(尺規(guī)作圖,保留作圖痕跡);

(3)在(2)的條件下,若AB2,BC4,則CN .

查看答案和解析>>

同步練習(xí)冊答案