【題目】如圖,菱形ABCD的邊AB=20,面積為320,∠BAD<90°,⊙O與邊AB,AD都相切,AO=10,則⊙O的半徑長等于( )
A.5
B.6
C.2
D.3
【答案】C
【解析】解:如圖作DH⊥AB于H,連接BD,延長AO交BD于E.
∵菱形ABCD的邊AB=20,面積為320,
∴ABDH=32O,
∴DH=16,
在Rt△ADH中,AH= =12,
∴HB=AB﹣AH=8,
在Rt△BDH中,BD= =8 ,
設(shè)⊙O與AB相切于F,連接AF.
∵AD=AB,OA平分∠DAB,
∴AE⊥BD,
∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,
∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,
∴△AOF∽△DBH,
∴ = ,
∴ = ,
∴OF=2 .
故選C.
【考點精析】解答此題的關(guān)鍵在于理解菱形的性質(zhì)的相關(guān)知識,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半,以及對切線的性質(zhì)定理的理解,了解切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店5月份購進一批A種畢業(yè)紀念冊,每本進價為20元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.
(1)請求出y與x的函數(shù)關(guān)系式;
(2)該文具店計劃6月份新進一批A、B兩種紀念冊共100本,且B種紀念冊的進貨數(shù)量不超過A種紀念冊的2倍,應(yīng)如何進貨才能使這批紀念冊獲利最多?A、B兩種型號紀念冊的進貨和銷售價格如下表:
A種 | B種 | |
進貨價格(元/本) | 20 | 24 |
銷售價格(元/本) | 25 | 30 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中點,點E在邊AC上,將△ADE沿DE翻折,使得點A落在點A'處,當A'E⊥AC時,A'B= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖所示,已知點C在線段AB上,線段AB=12,點M,N分別是AC,BC的中點,求線段MN的長度.
(2)把(1)中的“點C在線段AB上”改為“點C在線段AB延長上”,其他條件均不變,畫圖并求出線段MN的長度;
(3)已知線段AB,點C為直線AB外任意一點,點M,N分別是AC,BC的中點,連接MN,畫圖并猜想線段MN與線段AB的數(shù)量關(guān)系.(只要求畫圖,寫出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場,圖中的函數(shù)圖象刻畫了“龜免再次賽跑”的故事(x表示烏龜從起點出發(fā)所行的時間,y1表示烏龜所行的路程,y2表示兔子所行的路程),有下列說法:
①兔子和烏龜同時從起點出發(fā);②“龜兔再次賽跑”的路程為1000米;
③烏龜在途中休息了10分鐘; ④兔子比烏龜早10分鐘到達終點.
其中正確的說法是_____(把你認為正確說法的序號都填上);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點P是△ABC的邊AC上一點.
(1)寫出點A、C的坐標:A: ;C:
(2)△ABC的面積為
(3)請在這個坐標系內(nèi)畫出△A1B1C1,使△A1B1C1與△ABC關(guān)于y軸對稱.
(4)若點P的坐標為(a+1,b﹣1),點P關(guān)于y軸的對稱點為點Q,則點Q的坐標為 (用含字母a或b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=4,AD=m,動點P從點D出發(fā),在邊DA上以每秒1個單位的速度向點A運動,連接CP,作點D關(guān)于直線PC的對稱點E,設(shè)點P的運動時間為t(s).
(1)若m=6,求當P,E,B三點在同一直線上時對應(yīng)的t的值.
(2)已知m滿足:在動點P從點D到點A的整個運動過程中,有且只有一個時刻t,使點E到直線BC的距離等于3,求所有這樣的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1) (﹣2x)3﹣(﹣x)·(3x)2
(2) (2a+b)(4a2+b2)(2a﹣b)
(3)(π﹣3.14)0+(﹣1)3+()-3÷(﹣2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com