【題目】已知:如圖,點(diǎn)P,點(diǎn)Q分別代表兩個(gè)小區(qū),直線l代表兩個(gè)小區(qū)中間的一條公路.根據(jù)居民出行的需要,計(jì)劃在公路l上的某處設(shè)置一個(gè)公交站點(diǎn).

①若考慮到小區(qū)P居住的老年人較多,計(jì)劃建一個(gè)離小區(qū)P最近的車(chē)站,請(qǐng)?jiān)诠穕上畫(huà)出車(chē)站的位置(用點(diǎn)M表示);
②若考慮到修路的費(fèi)用問(wèn)題,希望車(chē)站的位置到小區(qū)P和小區(qū)Q的距離之和最小,請(qǐng)?jiān)诠穕上畫(huà)出車(chē)站的位置(用點(diǎn)N表示).

【答案】解:如圖,點(diǎn)M、點(diǎn)N即為所示


【解析】根據(jù)垂線段最短,得到點(diǎn)M距離小區(qū)P最近;根據(jù)兩點(diǎn)之間線段最短,得到點(diǎn)N的位置到小區(qū)P和小區(qū)Q的距離之和最小.
【考點(diǎn)精析】掌握線段的基本性質(zhì)和垂線段最短是解答本題的根本,需要知道線段公理:所有連接兩點(diǎn)的線中,線段最短.也可簡(jiǎn)單說(shuō)成:兩點(diǎn)之間線段最短;連接兩點(diǎn)的線段的長(zhǎng)度,叫做這兩點(diǎn)的距離;線段的大小關(guān)系和它們的長(zhǎng)度的大小關(guān)系是一致的;連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短;現(xiàn)實(shí)生活中開(kāi)溝引水,牽牛喝水都是“垂線段最短”性質(zhì)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ACB和△DCE均為等腰三角形,點(diǎn)A,D,E在同一直線上,連接BE.

(1)如圖1,若∠CAB=∠CBA=∠CDE=∠CED=50°

①求證:AD=BE;

②求∠AEB的度數(shù).

(2)如圖2,若∠ACB=∠DCE=120°,CM為△DCE中DE邊上的高,BN為△ABE中AE邊上的高,試證明:AE=CM+BN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,a),B(b,0),其中a,b滿(mǎn)足|a﹣2|+(b﹣3)2=0.

(1)a= , b=;
(2)如果在第二象限內(nèi)有一點(diǎn)M(m,1),請(qǐng)用含m的式子表示四邊形ABOM的面積;
(3)在(2)條件下,當(dāng)m=﹣ 時(shí),在坐標(biāo)軸的負(fù)半軸上求點(diǎn)N(的坐標(biāo)),使得△ABN的面積與四邊形ABOM的面積相等.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:a2+2a+1=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,A=ABC=90°,AD=1,BC=3,E是邊CD的中點(diǎn),連接BE并延長(zhǎng)與AD的延長(zhǎng)線相交于點(diǎn)F.

(1)求證:四邊形BDFC是平行四邊形;

(2)若BCD是等腰三角形,求四邊形BDFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(x+1)(x﹣2)=x2+mx+n,則m+n=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三角形的周長(zhǎng)是 (3x22) cm,第一條邊長(zhǎng)度是( 5xx2 )cm,第二條邊比第一條邊長(zhǎng) (3x210x+6) cm,則第三條邊的長(zhǎng)度是( )cm.
A.2x28
B.x2+6
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】單項(xiàng)式 與24x5y的積為( 。
A.﹣4x7y4z
B.﹣4x7y4
C.﹣3x7y4z
D.3x7y4z

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:
將1到 n+1 ( n≥1 ,且 n 為正整數(shù))一共 n+1 個(gè)連續(xù)正整數(shù)按從小到大的順序排成一排,每相鄰的兩個(gè)數(shù)之間放置一個(gè)方格.
(1)一共需要放置個(gè)方格;
(2)如果第一個(gè)方格填入加號(hào)“+”,第二個(gè)方格填入減號(hào)“-”,第三個(gè)方格填入加號(hào)“+”,第四個(gè)方格填入減號(hào)“-”,…,按此規(guī)律輪流將加、減號(hào)從左向右依次填入方格中,問(wèn)最后一個(gè)方格應(yīng)填入什么符號(hào)?
(3)按照(2)中的方法我們用加、減號(hào)將1到 n+1 一共 n+1 個(gè)連續(xù)正整數(shù)連接成一個(gè)算式,問(wèn)這個(gè)算式的值等于多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案