如圖所示,矩形ABCD中,AB=2,BC=3,P為BC邊上與BC兩點不重合的任意一點.設PA=x,D到PA的距離為y,則y與x的函數(shù)關系式為________,自變量的取值范圍是________.

y=    
分析:把已知的線段用含x、y的代數(shù)式表示出來,轉(zhuǎn)化到兩個三角形中,易證其相似,從而得出關系式,進而求出x的取值范圍.
解答:∵四邊形ABCD是矩形,
∴AD∥BC,∠B=90°,
∴∠DAE=∠APB,
∵DE⊥AP,∴∠AED=90°,
∴∠B=∠AED=90°,
∴△ABP∽△DEA;

即:,
∴y=
故答案為:y=,
∵AP為直角三角形ABP的斜邊,AB=2,
∴AP>2,即x>2,
∵當點P移動到點C時AP最長,
∴AP=x===,
∵AP<
∴2<x<,
故答案為:2<x<
點評:此題主要利用了相似三角形的性質(zhì),利用性質(zhì)建立已知和未知之間的聯(lián)系是關鍵,根據(jù)圖形化到相應的部分中,運用相關知識解決.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖①,在平面直角坐標系中,已知△ABC是等邊三角形,點B的坐標為(12,0),動點P在線段AB上從點A向點B以每秒
3
個單位的速度運動,設運動時間為t秒.以點P為頂點,作等邊△PMN,點M,N在x軸上.
(1)當t為何值時,點M與點O重合;
(2)求點P坐標和等邊△PMN的邊長(用t的代數(shù)式表示);
(3)如果取OB的中點D,以OD為邊在△AOB內(nèi)部作如圖②所示的矩形ODEF,點E在線段AB上.設等邊△PMN和矩形ODEF重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖所示,在△ABC中,分別以AB、AC、BC為邊在BC的同側(cè)作等邊△ABD,等邊△ACE、等邊△BCF.
(1)求證:四邊形DAEF是平行四邊形;
(2)探究下列問題:(只填滿足的條件,不需證明)
①當△ABC滿足
∠BAC=150°
條件時,四邊形DAEF是矩形;
②當△ABC滿足
AB=AC≠BC
條件時,四邊形DAEF是菱形;
③當△ABC滿足
∠BAC=60°
條件時,以D、A、E、F為頂點的四邊形不存在.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖①在矩形ABCD中,動點P從點B出發(fā),沿著BC、CD、DA運動到點A停止,設點P運動的路程為x,△ABP的面積為y,如果y與x的函數(shù)圖象如圖②所示,則△ABC的周長為
12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC是等邊三角形,點O為是AC的中點,OB=12,動點P在線段AB上從點A向點B以每秒
3
個單位的速度運動,設運動時間為t秒.以點P為頂點,作等邊△PMN,點M,N在直線OB上,取OB的中點D,以OD為邊在△AOB內(nèi)部作如圖所示的矩形ODEF,點E在線段AB上.
(1)求當?shù)冗叀鱌MN的頂點M運動到與點O重合時t的值;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示);
(3)設等邊△PMN和矩形ODE F重疊部分的面積為S,請求你直接寫出當0≤t≤2秒時S與t的函數(shù)關系式,并寫出對應的自變量t的取值范圍;
(4)點P在運動過程中,是否存在點M,使得△EFM是等腰三角形?若存在,求出對應的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•邵陽)如圖所示,在△ABC中,AB=AC,∠A<90°,邊BC、CA、AB的中點分別是D、E、F,則四邊形AFDE是( 。

查看答案和解析>>

同步練習冊答案