【題目】△ABC中,AB=AC=4,BC=5,點D是邊AB的中點,點E是邊AC的中點,點P是邊BC上的動點,∠DPE=∠C,則BP= .
【答案】1或4
【解析】解:∵AB=AC=4,點D是邊AB的中點,點E是邊AC的中點,
∴BD=2,CE=2,∠B=∠C,
∵∠DPE=∠C,
∴∠BPD=180°﹣∠B﹣∠DPE,∠CEP=180°﹣∠EPC﹣∠C,
∴∠DPB=∠PEC,
∴△BPD∽△CPE,
∴ ,即 ,
∴PB=1或4,
所以答案是:1或4.
【考點精析】通過靈活運用等腰三角形的性質和相似三角形的判定與性質,掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀與理解:
三角形中一邊中點與這邊所對頂點的線段稱為三角形的中線。
三角形的中線的性質:三角形的中線等分三角形的面積。
即如圖1,AD是中BC邊上的中線,則,
理由:,,
即:等底同高的三角形面積相等。
操作與探索:
在如圖2至圖4中,的面積為a。
(1)如圖2,延長的邊BC到點D,使CD=BC,連接DA,若的面積為,則(用含a的代數(shù)式表示);
(2)如圖3,延長的邊BC到點D,延長邊CA到點E,使CD=BC,AE=CA,連接DE,若的面積為,則_________(用含a的代數(shù)式表示);
(3)在圖3的基礎上延長AB到點F,使BF=AB,連接FD,F(xiàn)E,得到(如圖4),若陰影部分的面積為,則________(用含a的代數(shù)式表示)
(4)拓展與應用:
如圖5,已知四邊形ABCD的面積是a;E,F,G,H分別是AB,BC,CD的中點,求圖中陰影部分的面積?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是邊AB的高線,動點E從點A出發(fā),以每秒1個單位的速度沿射線AC運動;同時,動點F從點C出發(fā),以相同的速度沿射線CB運動.設E的運動時間為t(s)(t>0).
(1)AE= (用含t的代數(shù)式表示),∠BCD的大小是 度;
(2)點E在邊AC上運動時,求證:△ADE≌△CDF;
(3)點E在邊AC上運動時,求∠EDF的度數(shù);
(4)連結BE,當CE=AD時,直接寫出t的值和此時BE對應的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了推動“龍江經濟帶”建設,我省某蔬菜企業(yè)決定通過加大種植面積、增加種植種類,促進經濟發(fā)展,2017年春,預計種植西紅柿、馬鈴薯、青椒共100公頃(三種蔬菜的種植面積均為整數(shù)),青椒的種植面積是西紅柿種植面積的2倍,經預算,種植西紅柿的利潤可達1萬元/公頃,青椒1.5萬元/公頃,馬鈴薯2萬元/公頃,設種植西紅柿x公頃,總利潤為y萬元.
(1)求總利潤y(萬元)與種植西紅柿的面積x(公頃)之間的關系式.
(2)若預計總利潤不低于180萬元,西紅柿的種植面積不低于8公頃,有多少種種植方案?
(3)在(2)的前提下,該企業(yè)決定投資不超過獲得最大利潤的在冬季同時建造A、B兩種類型的溫室大棚,開辟新的經濟增長點,經測算,投資A種類型的大棚5萬元/個,B種類型的大棚8萬元/個,請直接寫出有哪幾種建造方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“轉化”是數(shù)學中的一種重要思想,即把陌生的問題轉化成熟悉的問題,把復雜的問題轉化成簡單的問題,把抽象的問題轉化為具體的問題.
(1)請你根據已經學過的知識求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數(shù);
(2)若對圖(1)中星形截去一個角,如圖(2),請你求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù);
(3)若再對圖(2)中的角進一步截去,你能由題(2)中所得的方法或規(guī)律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數(shù)嗎?只要寫出結論,不需要寫出解題過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖2).
(1)圖2中的陰影部分的面積為 ;
(2)觀察圖2請你寫出(a+b)2、(a﹣b)2、ab之間的等量關系是 ;
(3)根據(2)中的結論,若x+y=7,xy=,則x﹣y= ;
(4)實際上通過計算圖形的面積可以探求相應的等式.根據圖3,寫出一個因式分解的等式 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于m的方程(m-16)=7的解也是關于x的方程2(x-3)-n=52的解.
(1)求m,n的值;
(2)已知∠AOB=m°,在平面內畫一條射線OP,恰好使得∠AOP=n∠BOP,求∠BOP.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:(1)∣—6∣+(—3.14)0—()-2+(—2)3 (2)(-a)3a2+(2a4)2÷a3.
(3) (4)(a-2b)(a+b)-3a(a+b)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊△ABC外側作直線AP,點B關于直線AP的對稱點為D,連結BD,CD,其中CD交直線AP與點E.
(1)如圖1,若∠PAB=30°,則∠ACE= ;
(2)如圖2,若60°<∠PAB<120°,請補全圖形,判斷由線段AB,CE,ED可以構成一個含有多少度角的三角形,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com