如圖1,已知直線與雙曲線交于A、B兩點,且點A的橫坐標為4.
(1)求k的值;
(2)如圖2,過原點O的另一條直線l交雙曲線于C、D兩點(點C在第一象限且在點A的左邊),當四邊形ACBD的面積為24時,求點C的坐標.

【答案】分析:(1)根據(jù)正比例函數(shù)先求出點A的坐標,從而求出了k值為8;
(2)根據(jù)k的幾何意義可知S△COE=S△AOF,所以S梯形CEFA=S△COA=6.
解答:解:(1)在中,當x=4時,y=2,
∴點A的坐標是(4,2).(2分)
∵點A(4,2)在雙曲線上,
∴k=4×2=8.

(2)∵反比例函數(shù)的圖象是關(guān)于原點O的中心對稱圖形,
∴OA=OB,OC=OD.
∴四邊形ACBD是平行四邊形.

設(shè)點C的橫坐標為m(0<m<4),則C().
過點C、A分別作x軸的垂線,垂足分別為E、F.

∵S△COE+S梯形CEFA=S△COA+S△AOF
∴S梯形CEFA=S△COA=6.
,解得m1=2,m2=-8(不合,舍去),
∴點C的坐標為(2,4).
點評:本題主要考查了待定系數(shù)法求反比例函數(shù)的解析式和反比例函數(shù) 中k的幾何意義.這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標系xOy中,經(jīng)過點A,C,B的拋物線的一部分與經(jīng)過點A,E,B的拋物線的一部分組合成一條封閉曲線,我們把這條封閉曲線稱為“雙拋物線”.已知P為AB中精英家教網(wǎng)點,且P(-1,0),C(
2
-1,1),E(0,-3),S△CPA=1.
(1)試求“雙拋物線”中經(jīng)過點A,E,B的拋物線的解析式;
(2)若點F在“雙拋物線”上,且S△FAP=S△CAP,請你直接寫出點F的坐標;
(3)如果一條直線與“雙拋物線”只有一個交點,那么這條直線叫做“雙拋物線”的切線.若過點E與x軸平行的直線與“雙拋物線”交于點G,求經(jīng)過點G的“雙拋物線”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:學(xué)習(xí)周報 數(shù)學(xué) 北師大九年級版 2009-2010學(xué)年 第25期 總第181期 北師大版 題型:044

如圖,在平面直角坐標系xOy中,經(jīng)過點A、C、B的拋物線的一部分與經(jīng)過點A、E、B的拋物線的一部分組合成一條封閉曲線,我們把這條封閉曲線稱為“雙拋物線”.已知P為AB的中點,且P(-1,0),C(-1,1),E(0,-3),S△CPA=1.

(1)試求“雙拋物線”中經(jīng)過點A、E、B的拋物線的解析式;

(2)若點F在“雙拋物線”上,且S△FAP=S△CAP,請你直接寫出點F的坐標;

(3)如果一條直線與“雙拋物線”只有一個交點,那么這條直線叫做“雙拋物線”的切線.若過點E與x軸平行的直線與“雙拋物線”交于點G,求經(jīng)過點G的“雙拋物線”的切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,經(jīng)過點A,C,B的拋物線的一部分與經(jīng)過點A,E,B的拋物線的一部分組合成一條封閉曲線,我們把這條封閉曲線稱為“雙拋物線”.已知P為AB中點,且P(-1,0),C(數(shù)學(xué)公式-1,1),E(0,-3),S△CPA=1.
(1)試求“雙拋物線”中經(jīng)過點A,E,B的拋物線的解析式;
(2)如果一條直線與“雙拋物線”只有一個交點,那么這條直線叫做“雙拋物線”的切線.若過點E與x軸平行的直線與“雙拋物線”交于點G,求經(jīng)過點G的“雙拋物線”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,經(jīng)過點A,C,B的拋物線的一部分與經(jīng)過點A,E,B的拋物線的一部分組合成一條封閉曲線,我們把這條封閉曲線稱為“雙拋物線”.已知P為AB中點,且P(-1,0),C(數(shù)學(xué)公式-1,1),E(0,-3),S△CPA=1.
(1)試求“雙拋物線”中經(jīng)過點A,E,B的拋物線的解析式;
(2)若點F在“雙拋物線”上,且S△FAP=S△CAP,請你直接寫出點F的坐標;
(3)如果一條直線與“雙拋物線”只有一個交點,那么這條直線叫做“雙拋物線”的切線.若過點E與x軸平行的直線與“雙拋物線”交于點G,求經(jīng)過點G的“雙拋物線”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年新人教版九年級(上)期末數(shù)學(xué)復(fù)習(xí)試卷(解析版) 題型:解答題

如圖,在平面直角坐標系xOy中,經(jīng)過點A,C,B的拋物線的一部分與經(jīng)過點A,E,B的拋物線的一部分組合成一條封閉曲線,我們把這條封閉曲線稱為“雙拋物線”.已知P為AB中點,且P(-1,0),C(-1,1),E(0,-3),S△CPA=1.
(1)試求“雙拋物線”中經(jīng)過點A,E,B的拋物線的解析式;
(2)若點F在“雙拋物線”上,且S△FAP=S△CAP,請你直接寫出點F的坐標;
(3)如果一條直線與“雙拋物線”只有一個交點,那么這條直線叫做“雙拋物線”的切線.若過點E與x軸平行的直線與“雙拋物線”交于點G,求經(jīng)過點G的“雙拋物線”切線的解析式.

查看答案和解析>>

同步練習(xí)冊答案