【題目】計算:計算與化簡
(1) ﹣(﹣2)2+(﹣0.1)0;
(2)(x﹣2)2﹣(x+3)(x﹣1).

【答案】
(1)解:原式=3﹣4+1=0

(2)解:原式=x2﹣4x+4﹣(x2+2x﹣3)=x2﹣4x+4﹣x2﹣2x+3=﹣6x+7
【解析】(1)利用算數(shù)平方根的意義,非零數(shù)的零次冪意義可得出結果;(2)利用完全平方公式、多項式乘多項式法則可化簡出結果.
【考點精析】認真審題,首先需要了解零指數(shù)冪法則(零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù))),還要掌握多項式乘多項式(多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】王老師為學校購買運動會的獎品后,回學校向后勤處趙主任交賬說:我買了兩種書共105本,單價分別為8元和12元,買書前我領了1600元,現(xiàn)在還余518元.趙主任算了一下說:你肯定搞錯了.

1)趙主任為什么說他搞錯了,請你用方程組的知識給予解釋;

2)王老師連忙拿出購物發(fā)票,發(fā)現(xiàn)的確弄錯了,因為他還買了一個筆記本,但筆記本的單價已模糊不清,只能辨認出應為小于5元的整數(shù),筆記本的單價可能為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

⑴請畫出△ABC關于y軸對稱的△A’B’C’(其中A’,B’,C’分別是A,B,C的對應點,不寫畫法);

⑵直接寫出A’,B’,C’三點的坐標:A’ ( ),B’( ),C’( );

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,頂點為A的拋物線y=a(x+2)2﹣4交x軸于點B(1,0),連接AB,過原點O作射線OM∥AB,過點A作AD∥x軸交OM于點D,點C為拋物線與x軸的另一個交點,連接CD.

(1)求拋物線的解析式;
(2)若動點P從點O出發(fā),以每秒1個單位長度的速度沿著射線OM運動,設點P運動的時間為t秒,問:當t為何值時,OB=AP;
(3)若動點P從點O出發(fā),以每秒1個單位長度的速度沿線段OD向點D運動,同時動點Q從點C出發(fā),以每秒2個單位長度的速度沿線段CO向點O運動,當其中一個點停止運動時另一個點也隨之停止運動.設它們的運動時間為t秒,連接PQ.問:當t為何值時,四邊形CDPQ的面積最?并求此時PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠A=110°,在邊AN上取B,C,使AB=BC.點P為邊AM上一點,將△APB沿PB折疊,使點A落在角內(nèi)點E處,連接CE,則∠BPE+∠BCE=°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把△ABC沿EF對折,疊合后的圖形如圖所示.若∠A=60°,∠1=85°,則∠2的度數(shù)( )

A. 24°B. 25°C. 30°D. 35°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABCD,對角線AC,BD相較于點O,要使ABCD為矩形,需添加下列的一個條件是  

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,如圖1,再在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒,底面為矩形EFGH,如圖2.設小正方形的邊長為x厘米.

(1)當矩形紙板ABCD的一邊長為90厘米時,求紙盒的側面積的最大值;
(2)當EH:EF=7:2,且側面積與底面積之比為9:7時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了增強學生的身體素質,西南大學附中七年級學生在每天晚自習之后進行夜跑.在學期末的體育考試中,七年級的同學們表現(xiàn)出很好的體育素養(yǎng),并取得了良好的體育成績.為了了解七年級學生的體育考試情況,小明抽取了部分同學的體育考試成績進行分析,體育成績優(yōu)、良、中、差分別記為并繪制了如下兩幅不完整的統(tǒng)計表:

1)本次調查共調查了 名學生,并補全條形統(tǒng)計圖;

2)扇形統(tǒng)計圖中類所對應的扇形圓心角的度數(shù)是 度;

3)若七年級人數(shù)為人,請你估計體育成績優(yōu)、良的總人數(shù).

查看答案和解析>>

同步練習冊答案