【題目】在數(shù)軸上,點(diǎn)A向右移動(dòng)1個(gè)單位得到B,點(diǎn)B向右移動(dòng)(n+1)個(gè)單位得到點(diǎn)C,點(diǎn)C向右移動(dòng)(n+2)(n為正整數(shù))個(gè)單位得到點(diǎn)D,點(diǎn)A,B,C,D分別表示有理數(shù)a,b,c,d.
(1)當(dāng)n=1時(shí),B,C兩點(diǎn)的距離為 個(gè)單位,C,D兩點(diǎn)的距離為 個(gè)單位;
(2)當(dāng)a=-10,n=1時(shí),若A,B兩點(diǎn)以2個(gè)單位長(zhǎng)度/秒的速度向右勻速運(yùn)動(dòng),同時(shí)C,D兩點(diǎn)以1個(gè)單位長(zhǎng)度/秒的速度向左勻速運(yùn)動(dòng),并設(shè)運(yùn)動(dòng)時(shí)間為t秒,若A,B兩點(diǎn)都運(yùn)動(dòng)在C,D兩點(diǎn)之間(不與C,D兩個(gè)點(diǎn)重合)時(shí),求t的取值范圍;
(3)a,b,c,d四個(gè)數(shù)的積為正數(shù),且這四個(gè)數(shù)的和與其中的兩個(gè)數(shù)的和相等,a為整數(shù).若n分別取1,2,3,4……,50時(shí),對(duì)應(yīng)的a的值分貝記為a1,a2,a3,……,a50,則a1+a2+a3+……+a50=
【答案】(1)2;3;(2);(3)-702
【解析】
(1)由題意可知,B,C兩點(diǎn)的距離為n+1,C,D兩點(diǎn)的距離為n+2,將代入即可解答;
(2)根據(jù)a=-10,n=1,分別求出,,,根據(jù)題意可知,A、B兩點(diǎn)運(yùn)動(dòng)路程為:,C、D兩點(diǎn)運(yùn)動(dòng)路程為:;根據(jù)數(shù)軸上點(diǎn)之間的距離公式分別求出AC和BD,根據(jù)“A,B兩點(diǎn)都運(yùn)動(dòng)在C,D兩點(diǎn)之間”可知A點(diǎn)在C點(diǎn)右側(cè),B點(diǎn)在D點(diǎn)左側(cè),當(dāng)當(dāng)A、C兩點(diǎn)重合時(shí),列出方程;當(dāng)B、D兩點(diǎn)重合時(shí),列出方程;分別解得,;所以A,B兩點(diǎn)都運(yùn)動(dòng)在C,D兩點(diǎn)之間(不與C,D兩個(gè)點(diǎn)重合)時(shí),t的取值范圍是:;
(3)根據(jù)題意得,,,根據(jù)a,b,c,d四個(gè)數(shù)的積為正數(shù),且這四個(gè)數(shù)的和與其中的兩個(gè)數(shù)的和相等,即可得出用含n的式子表示a,由a為整數(shù),分兩種情況討論:當(dāng)n為奇數(shù)時(shí),當(dāng)n為偶數(shù)時(shí),得出,從而得出.
解:(1)由題意可知,B,C兩點(diǎn)的距離為n+1,C,D兩點(diǎn)的距離為n+2,
當(dāng)n=1時(shí),B,C兩點(diǎn)的距離為2個(gè)單位,C,D兩點(diǎn)的距離為3個(gè)單位;
故答案為:2;3
(2)當(dāng)a=-10,n=1時(shí),,,
A點(diǎn)運(yùn)動(dòng)路程為:,C點(diǎn)運(yùn)動(dòng)路程為:,
A、C兩點(diǎn)之間的距離為:
當(dāng)A、C兩點(diǎn)重合時(shí),
解得:
B點(diǎn)運(yùn)動(dòng)路程為:,D點(diǎn)運(yùn)動(dòng)路程為:,
B、D兩點(diǎn)之間的距離為:
當(dāng)B、D兩點(diǎn)重合時(shí),
解得:
∵A,B兩點(diǎn)都運(yùn)動(dòng)在C,D兩點(diǎn)之間(不與C,D兩個(gè)點(diǎn)重合)
∴t的取值范圍是:
(3)依據(jù)題意得:
∵a,b,c,d四個(gè)數(shù)的積為正數(shù),且這四個(gè)數(shù)的和與其中的兩個(gè)數(shù)的和相等,
∴或
∴或
∵a為整數(shù)
∴當(dāng)n為奇數(shù)時(shí),;當(dāng)n為偶數(shù)時(shí),
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】世界衛(wèi)生組織預(yù)計(jì):到2025年,全世界將會(huì)有一半人面臨用水危機(jī),為了倡導(dǎo)“節(jié)約用水,從我做起”,某縣政府決定對(duì)縣直屬機(jī)關(guān)300戶(hù)家庭一年的月平均用水量進(jìn)行調(diào)查,調(diào)查小組抽查了部分家庭月平均用水量(單位:噸),繪制條形圖和扇形圖如圖所示.
(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)這些家庭月平均用水量數(shù)據(jù)的平均數(shù)是_______,眾數(shù)是______,中位數(shù)是_______;
(3)根據(jù)樣本數(shù)據(jù),估計(jì)該縣直屬機(jī)關(guān)300戶(hù)家庭的月平均用水量不超過(guò)12噸的約有多少戶(hù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4 cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2 cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D,E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請(qǐng)說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)直接寫(xiě)出結(jié)果;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長(zhǎng)線和∠DCK的角平分線CF的反向延長(zhǎng)線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=( )
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我國(guó)煤礦安全事故頻頻發(fā)生,其中危害最大的是瓦斯,其主要成分是CO.在一次礦難事件的調(diào)查中發(fā)現(xiàn):從零時(shí)起,井內(nèi)空氣中CO的濃度達(dá)到4 mg/L,此后濃度呈直線型增加,在第7小時(shí)達(dá)到最高值46 mg/L,發(fā)生爆炸;爆炸后,空氣中的CO濃度成反比例下降,如圖,根據(jù)題中相關(guān)信息回答下列問(wèn)題:
(1)求爆炸前后空氣中CO濃度y與時(shí)間x的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)的自變量取值范圍;
(2)當(dāng)空氣中的CO濃度達(dá)到34 mg/L時(shí),井下3 km的礦工接到自動(dòng)報(bào)警信號(hào),這時(shí)他們至少要以多少km/h的速度撤離才能在爆炸前逃生?
(3)礦工只有在空氣中的CO濃度降到4 mg/L及以下時(shí),才能回到礦井開(kāi)展生產(chǎn)自救,求礦工至少在爆炸后多少小時(shí)才能下井?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近幾年,隨著電子商務(wù)的快速發(fā)展,“電商包裹件”占“快遞件”總量的比例逐年增長(zhǎng),根據(jù)企業(yè)財(cái)報(bào),某網(wǎng)站得到如下統(tǒng)計(jì)表:
年份 | 2014 | 2015 | 2016 | 2017(預(yù)計(jì)) |
快遞件總量(億件) | 140 | 207 | 310 | 450 |
電商包裹件(億件) | 98 | 153 | 235 | 351 |
(1)請(qǐng)選擇適當(dāng)?shù)慕y(tǒng)計(jì)圖,描述2014﹣2017年“電商包裹件”占當(dāng)年“快遞件”總量的百分比(精確到1%);
(2)若2018年“快遞件”總量將達(dá)到675億件,請(qǐng)估計(jì)其中“電商包裹件”約為多少億件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開(kāi)展形式多樣的陽(yáng)光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛(ài)好”的問(wèn)題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有 人喜歡籃球項(xiàng)目.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加;@球隊(duì),請(qǐng)直接寫(xiě)出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)“利用三角函數(shù)測(cè)高”后,某綜合實(shí)踐活動(dòng)小組實(shí)地測(cè)量了鳳凰山與中心廣場(chǎng)的相對(duì)高度AB,其測(cè)量步驟如下:
(1)在中心廣場(chǎng)測(cè)點(diǎn)C處安置測(cè)傾器,測(cè)得此時(shí)山頂A的仰角∠AFH=30°;
(2)在測(cè)點(diǎn)C與山腳B之間的D處安置測(cè)傾器(C、D與B在同一直線上,且C、D之間的距離可以直接測(cè)得),測(cè)得此時(shí)山頂上紅軍亭頂部E的仰角∠EGH=45°;
(3)測(cè)得測(cè)傾器的高度CF=DG=1.5米,并測(cè)得CD之間的距離為288米;
已知紅軍亭高度為12米,請(qǐng)根據(jù)測(cè)量數(shù)據(jù)求出鳳凰山與中心廣場(chǎng)的相對(duì)高度AB.(取1.732,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 某單位在二月份準(zhǔn)備組織部分員工到北京旅游,現(xiàn)聯(lián)系了甲、乙兩家旅行社,兩家旅行社報(bào)價(jià)均為2000元/人,兩家旅行社同時(shí)都對(duì)10人以上的團(tuán)體推出了優(yōu)惠舉措:甲旅行社對(duì)每位員工七五折優(yōu)惠;而乙旅行社是免去一位帶隊(duì)管理員工的費(fèi)用,其余員工八折優(yōu)惠.
(1)如果設(shè)參加旅游的員工共有a(a)人,則甲旅行社的費(fèi)用為 元,乙旅行社的費(fèi)用為 元;(用含a的代數(shù)式表示,并化簡(jiǎn).)
(2)假如這個(gè)單位現(xiàn)組織包括管理員工在內(nèi)的共20名員工到北京旅游,該單位選擇哪一家旅行社比較優(yōu)惠?請(qǐng)說(shuō)明理由;
(3)如果計(jì)劃在二月份外出旅游七天,設(shè)最中間一天的日期為m.
①這七天的日期之和為 ;(用含m的代數(shù)式表示,并化簡(jiǎn).)
②假如這七天的日期之和為63的倍數(shù),則他們可能于二月幾號(hào)出發(fā)?(寫(xiě)出所有符合條件的可能性,并寫(xiě)出簡(jiǎn)單的計(jì)算過(guò)程.)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com