如圖所示的轉(zhuǎn)盤(pán),分成三個(gè)相同的扇形,指針位置固定,轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)后任其自由停止,其中的某個(gè)扇形會(huì)恰好停在指針?biāo)傅奈恢,并相?yīng)得到一個(gè)數(shù)(指針指向兩個(gè)扇形的交線時(shí),當(dāng)作指向右邊的扇形).
(1)求事件“轉(zhuǎn)動(dòng)一次,得到的數(shù)恰好是0”發(fā)生的概率;
(2)寫(xiě)出此情境下一個(gè)不可能發(fā)生的事件;
(3)用樹(shù)狀圖或列表法,求事件“轉(zhuǎn)動(dòng)兩次,第一次得到的數(shù)與第二次得到的數(shù)絕對(duì)值相等”發(fā)生的概率.

【答案】分析:(1)用列表法列舉出所有情況,看所求的情況與總情況的比值即可得答案,
(2)根據(jù)題意,找概率為0的事件,即可得答案;
(3)根據(jù)題意,用列表法列舉出所有情況,看所求的情況與總情況的比值即可得答案.
解答:解:(1)根據(jù)題意,作樹(shù)狀圖可得:

P(所指的數(shù)為0)=;

(2)(答案不唯一)如:
事件“轉(zhuǎn)動(dòng)一次,得到的數(shù)恰好是3”;

(3)方法一:畫(huà)樹(shù)狀圖如下:

所有可能出現(xiàn)的結(jié)果共有9種,其中滿(mǎn)足條件的結(jié)果有5種.
所以P(所指的兩數(shù)的絕對(duì)值相等)=
點(diǎn)評(píng):樹(shù)狀圖法適用于兩步或兩部以上完成的事件.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的轉(zhuǎn)盤(pán),分成三個(gè)相同的扇形,指針位置固定,轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)后任其自由停止,其中的某個(gè)扇形會(huì)恰好停在指針?biāo)傅奈恢茅v指針指向兩個(gè)扇形的交線時(shí),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)﹚,相應(yīng)地得到一個(gè)數(shù).精英家教網(wǎng)
﹙1﹚求事件“轉(zhuǎn)動(dòng)一次,得到的數(shù)恰好是0”發(fā)生的概率;
﹙2﹚用樹(shù)狀圖或表格,求事件“轉(zhuǎn)動(dòng)兩次,第一次得到的數(shù)與第二次得到的數(shù),它們的絕對(duì)值相等”發(fā)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示的轉(zhuǎn)盤(pán),分成三個(gè)相同的扇形,指針位置固定,轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)后任其自由停止,其中的某個(gè)扇形會(huì)恰好停在指針?biāo)傅奈恢,并相?yīng)得到一個(gè)數(shù)(指針指向兩個(gè)扇形的交線時(shí),當(dāng)作指向右邊的扇形).
(1)求事件“轉(zhuǎn)動(dòng)一次,得到的數(shù)恰好是0”發(fā)生的概率;
(2)寫(xiě)出此情境下一個(gè)不可能發(fā)生的事件;
(3)用樹(shù)狀圖或列表法,求事件“轉(zhuǎn)動(dòng)兩次,第一次得到的數(shù)與第二次得到的數(shù)絕對(duì)值相等”發(fā)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示的轉(zhuǎn)盤(pán)被分成面積相等的8塊,每塊上分別標(biāo)有數(shù)字.曉明轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止時(shí)指針指向2的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的轉(zhuǎn)盤(pán),分成三個(gè)相同的扇形,指針位置固定轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)后任其自由停止,其中的某個(gè)扇形會(huì)恰好停在指針?biāo)傅奈恢,并相?yīng)得到一個(gè)數(shù)(指針指向兩個(gè)扇形的交線時(shí),當(dāng)作指向右邊的扇形).
(1)求事件“轉(zhuǎn)動(dòng)一次,得到的數(shù)恰好是0”發(fā)生的概率;
(2)寫(xiě)出此情景下一個(gè)不可能發(fā)生的事件.
(3)用樹(shù)狀圖或列表法,求事件“轉(zhuǎn)動(dòng)兩次,第一次得到的數(shù)與第二次得到的數(shù)絕對(duì)值相等”發(fā)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省江陰市九年級(jí)中考模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示的轉(zhuǎn)盤(pán),分成三個(gè)相同的扇形,指針位置固定轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)后任其自由停止,其中的某個(gè)扇形會(huì)恰好停在指針?biāo)傅奈恢茫⑾鄳?yīng)得到一個(gè)數(shù)(指針指向兩個(gè)扇形的交線時(shí),當(dāng)作指向右邊的扇形).

1.求事件“轉(zhuǎn)動(dòng)一次,得到的數(shù)恰好是0”發(fā)生的概率;

2.寫(xiě)出此情景下一個(gè)不可能發(fā)生的事件.

3.用樹(shù)狀圖或列表法,求事件“轉(zhuǎn)動(dòng)兩次,第一次得到的數(shù)與第二次得到的數(shù)絕對(duì)值相等”發(fā)生的概率.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案