(2012•姜堰市二模)在平面直角坐標(biāo)系中,已知點A(4,0),點B(0,3).點P從點A出發(fā),以每秒1個單位的速度向右平移,點Q從點B出發(fā),以每秒2個單位的速度向右平移,又P、Q兩點同時出發(fā).
(1)連接AQ,當(dāng)△ABQ是直角三角形時,求點Q的坐標(biāo);
(2)當(dāng)P、Q運動到某個位置時,如果沿著直線AQ翻折,點P恰好落在線段AB上,求這時∠AQP的度數(shù);
(3)過點A作AC⊥AB,AC交射線PQ于點C,連接BC,D是BC的中點.在點P、Q的運動過程中,是否存在某時刻,使得以A、C、Q、D為頂點的四邊形是平行四邊形,若存在,試求出這時tan∠ABC的值;若不存在,試說明理由.
【答案】分析:(1)由于∠ABQ<90°,若△ABQ是直角三角形,需要考慮兩種情況:
①∠BAQ=90°,此時△BAQ∽△ABO,根據(jù)相似三角形所得比例線段,可求出BQ的長,即可得到Q點坐標(biāo);
②∠BQA=90°,此時四邊形BOAQ是矩形,BQ=OA,由此可求出Q點坐標(biāo).
(2)假設(shè)P點翻折到AB上時,落點為E,那么∠QAP=∠QAE,QE=QP;由于BQ∥OP,那么∠QAP=∠BQA=∠BAQ,即BQ=BA=5,此時P、Q運動了2.5s,所以AP=AE=,即E是AB的中點;分別過E、Q作BQ、OP的垂線,設(shè)垂足為F、H,易求EF=PH=,即可證得△QPH≌△QEF,得∠EQF=∠PQH,由此發(fā)現(xiàn)∠EQP=90°,而∠PQA=∠EQA,由此可求得∠AQP的度數(shù).
(3)假設(shè)存在這樣的平行四邊形,可分作兩種情況考慮:
①點C在線段PQ上,可延長AC、BQ交于點F,由于DQ∥AC,因此DQ是△BCF的中位線,則FC=2DQ=2AC,過F作FH⊥x軸于H,由于∠BAC=90°,可證得△AOB∽△FHA,通過得到的比例線段,即可求出AF的長,進(jìn)而可得到AC的長;在Rt△BAC中,已知了AC、BA的長,即可求出∠ABC的正切值;
②點C在PQ的延長線上,設(shè)AD、AC與BQ的交點分別為G、F,按照①的思路可證得AD=CQ=2AG,那么在相似三角形△CFQ和△AFG中,F(xiàn)C=2AF,即AC=3AF,AF的長在①中已求得,由此可得到AC的長,進(jìn)而可求出∠ABC的正切值.
解答:解:(1)根據(jù)題意,可得:A(4,0)、B(0,3),AB=5.
ⅰ)當(dāng)∠BAQ=90°時,△AOB∽△BAQ,
.解得;
ⅱ)當(dāng)∠BQA=90°時,BQ=OA=4,
∴Q或Q(4,3).(4分)

(2)令點P翻折后落在線段AB上的點E處,
則∠EAQ=∠PAQ,∠EQA=∠PQA,AE=AP,QE=QP;
又BQ∥OP,
∴∠PAQ=∠BQA,∴∠EAQ=∠BQA,
即AB=QB=5.
,
,即點E是AB的中點.
過點E作EF⊥BQ,垂足為點F,過點Q作QH⊥OP,垂足為點H,
,∴EF=PH.
又EQ=PQ,∠EFQ=∠PHQ=90°,
∴△EQF≌△PQH
∴∠EQF=∠PQH,從而∠PQE=90°.
∴∠AQP=∠AQE=45°.(8分)

(3)當(dāng)點C在線段PQ上時,延長BQ與AC的延長線交于點F,
∵AC⊥AB,
∴△AOB∽△FHA.
,

∵DQ∥AC,DQ=AC,且D為BC中點,
∴FC=2DQ=2AC.

在Rt△BAC中,tan∠ABC=;
當(dāng)點C在PQ的延長線上時,記BQ與AC的交點為F,記AD與BQ的交點為G,
∵CQ∥AD,CQ=AD且D為BC中點,
∴AD=CQ=2DG.
∴CQ=2AG=2PQ.
即:CQ:QP=2:1
又∵BQ∥OP
∴CF:AF=CQ:QP=2:1
∴FC=2AF,
又∵FA=,
∴FC=,

在Rt△BAC中,tan∠ABC=.(12分)
點評:此題考查的知識點較多,涉及到圖形的翻折變換、相似三角形及全等三角形的判定和性質(zhì)、三角形中位線定理以及銳角三角函數(shù)的定義等知識,同時還考查了分類討論的數(shù)學(xué)思想,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•姜堰市二模)一個等腰三角形的兩邊長分別為2和5,則它的周長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•姜堰市二模)如圖,自行車每節(jié)鏈條的長度為2.5cm,交叉重疊部分的圓的直徑為0.8cm,如果某種型號自行車的鏈條(沒有安裝前)共有60節(jié)鏈條組成,那么鏈條的總長度是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省泰州市姜堰市某重點學(xué)校中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2012•姜堰市二模)聰明好學(xué)的小云查閱有關(guān)資料發(fā)現(xiàn):用不過圓錐頂點平行于一條母線的平面截圓錐所得的截面為拋物面,即圖1中曲線CFD為拋物線的一部分,如圖1,圓錐體SAB的母線長為10,側(cè)面積為50π,圓錐的截面CFD交母線SB于F,交底面⊙P于C、D,AB⊥CD于O,OF∥SA且OF⊥CD,OP=4,OB=9.
(1)求底面圓的半徑AP的長及圓錐側(cè)面展開圖的圓心角的度數(shù);
(2)當(dāng)以CD所在直線為x軸,OF所在的直線為y軸建立如圖2所示的直角坐標(biāo)系,求過C、F、D三點的拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年吉林省吉林七中分校中考數(shù)學(xué)模擬試卷(周方民)(解析版) 題型:解答題

(2012•姜堰市二模)聰明好學(xué)的小云查閱有關(guān)資料發(fā)現(xiàn):用不過圓錐頂點平行于一條母線的平面截圓錐所得的截面為拋物面,即圖1中曲線CFD為拋物線的一部分,如圖1,圓錐體SAB的母線長為10,側(cè)面積為50π,圓錐的截面CFD交母線SB于F,交底面⊙P于C、D,AB⊥CD于O,OF∥SA且OF⊥CD,OP=4,OB=9.
(1)求底面圓的半徑AP的長及圓錐側(cè)面展開圖的圓心角的度數(shù);
(2)當(dāng)以CD所在直線為x軸,OF所在的直線為y軸建立如圖2所示的直角坐標(biāo)系,求過C、F、D三點的拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年吉林省吉林七中分校中考數(shù)學(xué)模擬試卷(周方民)(解析版) 題型:填空題

(2012•姜堰市二模)如圖,Rt△AOB中,O為坐標(biāo)原點,∠AOB=90°,∠B=30°,如果點A在反比例函數(shù)y=(x>0)的圖象上運動,那么點B在函數(shù)    (填函數(shù)解析式)的圖象上運動.

查看答案和解析>>

同步練習(xí)冊答案