(2011•裕華區(qū)二模)一鞋店試銷一種新款女鞋,試銷期間賣出情況如下表:
型號2222.52323.52424.525
數(shù)量(雙)351015832
對于這個鞋店的經(jīng)理來說最關(guān)心哪種型號鞋暢銷,則下列統(tǒng)計量對鞋店經(jīng)理來說最有意義的是( )
A.平均數(shù)
B.中位數(shù)
C.方差
D.眾數(shù)
【答案】分析:鞋店的經(jīng)理最關(guān)心的是各種鞋號的鞋的銷售量,特別是銷售量最大的鞋號.
解答:解:由于眾數(shù)是數(shù)據(jù)中出現(xiàn)最多的數(shù),鞋店的經(jīng)理最關(guān)心的是各種鞋號的鞋的銷售量,特別是銷售量最多的鞋號.故鞋店的經(jīng)理最關(guān)心的是眾數(shù).
故選D.
點評:本題考查學(xué)生對統(tǒng)計量的意義的理解與運(yùn)用.要求學(xué)生對統(tǒng)計量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•裕華區(qū)二模)已知a-b=1,則a2-b2-2b的值為
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•裕華區(qū)二模)如圖,直線l1與l2相交于點P,點P橫坐標(biāo)為-1,l1的解析表達(dá)式為y=
1
2
x+3,且l1與y軸交于點A,l2與y軸交于點B,點A與點B恰好關(guān)于x軸對稱.
(1)求點B的坐標(biāo);
(2)求直線l2的解析表達(dá)式;
(3)若點M為直線l2上一動點,直接寫出使△MAB的面積是△PAB的面積的
1
2
的點M的坐標(biāo);
(4)當(dāng)x為何值時,l1,l2表示的兩個函數(shù)的函數(shù)值都大于0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•裕華區(qū)二模)如圖①,將兩個等腰直角三角形疊放在一起,使上面三角板的一個銳角頂點與下面三角板的直角頂點重合,并將上面的三角板繞著這個頂點逆時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當(dāng)下面三角板的斜邊被分成三條線段時,我們來研究這三條線段之間的關(guān)系.
(1)實驗與操作:
如圖②,如果上面三角板的一條直角邊旋轉(zhuǎn)到CM的位置時,它的斜邊恰好旋轉(zhuǎn)到CN的位置,請在網(wǎng)格中分別畫出以AM、MN和NB為邊長的正方形,觀察這三個正方形的面積之間的關(guān)系;
(2)猜想與探究:
如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點,∠MCN=45°,作DA⊥AB于點A,截取DA=NB,并連接DC、DM.
我們來證明線段CD與線段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于點A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

請你繼續(xù)解答:
①線段MD與線段MN相等嗎?為什么?
②線段AM、MN、NB有怎樣的數(shù)量關(guān)系,為什么?
(3)拓廣與運(yùn)用:
如圖④,已知線段AB上任意一點M(AM<MB),是否總能在線段MB上找到一點N,使得分別以AM與BN為邊長的正方形的面積的和等于以MN為邊長的正方形的面積?若能,請在圖④中畫出點N的位置,并簡要說明作法;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)考前知識點回歸+鞏固 專題5 一次方程(組)(解析版) 題型:填空題

(2011•裕華區(qū)二模)某商店一套秋裝的進(jìn)價為200元,按標(biāo)價的80%銷售可獲利72元,則該服裝的標(biāo)價為    元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省泉州市初中畢業(yè)班數(shù)學(xué)總復(fù)習(xí)綜合練習(xí)(一)(解析版) 題型:填空題

(2011•裕華區(qū)二模)某商店一套秋裝的進(jìn)價為200元,按標(biāo)價的80%銷售可獲利72元,則該服裝的標(biāo)價為    元.

查看答案和解析>>

同步練習(xí)冊答案