【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準備在一個廣場上種植甲、乙兩種花卉.經(jīng)市場調(diào)查,甲種花卉的種植費用(元)與種植面積之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費用為每平方米100.

(1)直接寫出當時,的函數(shù)關(guān)系式;

(2)廣場上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于,且不超過乙種花卉種植面積的2倍,那么應該怎樣分配甲、乙兩種花卉的種植面積才能使種植費用最少?最少總費用為多少元?

【答案】(1);(2)應分配甲種花卉種植面積為,乙種花卉種植面積為,才能使種植總費用最少,最少總費用為119000.

【解析】1)由圖可知yx的函數(shù)關(guān)系式是分段函數(shù),待定系數(shù)法求解析式即可.

2)設(shè)甲種花卉種植為 a m2,則乙種花卉種植(12000-am2,根據(jù)實際意義可以確定a的范圍,結(jié)合種植費用y(元)與種植面積xm2)之間的函數(shù)關(guān)系可以分類討論最少費用為多少.

1

2)設(shè)甲種花卉種植面積為,則乙種花卉種植面積為.

.

時,.

時,.

時,.

時,.

時,總費用最低,最低為119000.

此時乙種花卉種植面積為.

答:應分配甲種花卉種植面積為,乙種花卉種植面積為,才能使種植總費用最少,最少總費用為119000.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】綜合題

如圖1,為直線上一點,過點作射線,,將一直角三角板()的直角頂點放在點處,一邊在射線上,另一邊都在直線的上方.

1)將圖1中的三角板繞點以每秒的速度沿順時針方向旋轉(zhuǎn)一周,如圖2,經(jīng)過秒后,恰好平分

①此時的值為______;(直接填空)

②此時是否平分?請說明理由.

2)在(1)問的基礎(chǔ)上,若三角板在轉(zhuǎn)動的同時,射線也繞點以每秒的速度沿順時針方向旋轉(zhuǎn)一周,如圖3,那么經(jīng)過多長時間平分?請說明理由;

3)在(2)問的基礎(chǔ)上,經(jīng)過多長時間平分?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上三點AOB表示的數(shù)分別為6,0,-4,動點PA出發(fā),以每秒6個單位的速度沿數(shù)軸向左勻速運動.

1)當點P到點A的距離與點P到點B的距離相等時,點P在數(shù)軸上表示的數(shù)是 ;

2)另一動點RB出發(fā),以每秒4個單位的速度沿數(shù)軸向左勻速運動,若點P、R同時出發(fā),問點P運動多少時間追上點R?

3)若MAP的中點,NPB的中點,點P在運動過程中,線段MN的長度是否發(fā)生變化?若發(fā)生變化,請你說明理由;若不變,請你畫出圖形,并求出線段MN的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,AC=2,BC=5,點DBC邊上一點且CD=1,點P是線段DB上一動點,連接AP,以AP為斜邊在AP的下方作等腰RtAOP.當P從點D出發(fā)運動至點B停止時,點O的運動路徑長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解本校七年級學生的視力情況(視力情況分為:不近視,輕度近視,中度近視,重度近視),隨機對七年級的部分學生進行了抽樣調(diào)查,將調(diào)查結(jié)果進行整理后,繪制了如下不完整的統(tǒng)計圖,其中中度近視人數(shù)是不近視與重度近視人數(shù)之和的一半.

請你根據(jù)以上信息解答下列問題:

1)求本次調(diào)查的學生人數(shù);

2)補全條形統(tǒng)計圖.在扇形統(tǒng)計圖中,求“中度近視”對應扇形的圓心角的度數(shù);

3)若該校七年級學生有1200人,請你估計該校七年級近視(包括輕度近視,中度近視,重度近視)的學生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】衡陽市城市標志來雁塔坐落在衡陽市雁峰公園內(nèi).如圖,為了測量來雁塔的高度E處用高為1.5 m的測角儀AE,測得塔頂C的仰角為30°,再向塔身前進10.4 m,又測得塔頂C的仰角為60°,求來雁塔的高度.(結(jié)果精確到0.1 m)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AB的長度是㎝,線段BC的長度比線段AB的長度的2倍多3㎝,線段AD的長度比線段BC的長度的2倍少6㎝.

1)寫出用表示線段CD的長度的式子;

2)當=15時,求線段CD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在四邊形中ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P為四邊形ABCD邊上的任意一點,當∠BPC=30°時,CP的長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù),它與軸交于、,且、位于原點兩側(cè),與的正半軸交于,頂點軸右側(cè)的直線上,則下列說法:① 其中正確的結(jié)論有(

A.①②B.②③C.①②③D.①②③④

查看答案和解析>>

同步練習冊答案