【題目】某小區(qū)居民利用健步行APP”開展健步走活動,為了解居民的健步走情況,小文同學調(diào)查了部分居民某天行走的步數(shù)單位:千步,并將樣本數(shù)據(jù)整理繪制成如下不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖.

有下面四個推斷:

小文此次一共調(diào)查了200位小區(qū)居民;

行走步數(shù)為千步的人數(shù)超過調(diào)查總?cè)藬?shù)的一半;

行走步數(shù)為千步的人數(shù)為50人;

行走步數(shù)為千步的扇形圓心角是

根據(jù)統(tǒng)計圖提供的信息,上述推斷合理的是  

A. B. C. D.

【答案】C

【解析】

千步的人數(shù)及其所占百分比可判斷;由行走步數(shù)為千步的人數(shù)為70,未超過調(diào)查總?cè)藬?shù)的一半可判斷;總?cè)藬?shù)乘以千步的人數(shù)所占比例可判斷;用乘以千步人數(shù)所占比例可判斷

小文此次一共調(diào)查了位小區(qū)居民,正確;

行走步數(shù)為千步的人數(shù)為70,未超過調(diào)查總?cè)藬?shù)的一半,錯誤;

行走步數(shù)為千步的人數(shù)為人,正確;

行走步數(shù)為千步的扇形圓心角是,正確,

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀,后解答: = = =3+
像上述解題過程中, + 相乘,積不含有二次根式,我們可將這兩個式子稱為互為有理化因式,上述解題過程也稱為分母有理化,
(1) 的有理化因式是; +2的有理化因式是
(2)將下列式子進行分母有理化: = =
(3)已知a= ,b=2﹣ ,比較a與b的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某高中學校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級(3)班學生即將所穿校服型號情況進行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6種型號).

根據(jù)以上信息,解答下列問題:

(1)該班共有多少名學生?其中穿175型校服的學生有多少人?

(2)在條形統(tǒng)計圖中,請把空缺的部分補充完整;

(3)在扇形統(tǒng)計圖中,請計算185型校服所對應扇形圓心角的大小;

(4)求該班學生所穿校服型號的眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了參觀上海世博會,某公司安排甲、乙兩車分別從相距300千米的上海、泰州兩地同時出發(fā)相向而行,甲到泰州帶客后立即返回,下圖是它們離各自出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)圖像.
(1)請直接寫出甲離出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當它們行駛4.5小時后離各自出發(fā)點的距離相等,求乙車離出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,甲、乙兩車從各自出發(fā)地駛出后經(jīng)過多少時間相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則點(b, )在第( )象限.
A.一
B.二
C.三
D.四

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)在x= 時,有最小值﹣ ,且函數(shù)的圖象經(jīng)過點(0,2),則此函數(shù)的解析式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△AEB和Rt△AFC中,BE與AC相交于點M,與CF相交于點D,AB與CF相交于N,∠E=∠F=90°,∠EAC=∠FAB,AE=AF.給出下列結(jié)論:①∠B=∠C;②CD=DN;③BE=CF;④△ACN≌△ABM.其中正確的結(jié)論是(  )

A. ①③④ B. ②③④ C. ①②③ D. ①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.

(1)求證:DEF是等腰三角形;

(2)當∠A=40°時,求∠DEF的度數(shù);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.
(1)試說明DF是⊙O的切線;
(2)若AC=3AE,求 的值.

查看答案和解析>>

同步練習冊答案