如圖,⊙Mx軸相切于點(diǎn)C,與y軸的一個(gè)交點(diǎn)為A。

(1)求證:AC平分∠OAM

(2)如果⊙M的半徑等于4,∠ACO=300,

AM所在直線的解析式.

 



(1)證明:∵ 圓Mx軸相切于點(diǎn)C

連結(jié)MC,則MCx

MC∥y

∴ ∠MCA=OAC        ………………1分

又∵ MA= MC

∴ ∠MCA=MAC        ………………1分

∴ ∠OAC =MAC

AC平分∠OAM;      ………………2分

(2)∵ ∠ACO=300,∴ ∠MCA= 600,

∴ △MAC是等邊三角形

AC= MC=4     ∴ 在RtAOC中,OA=2

A點(diǎn)的坐標(biāo)是(0,2)          ……………………2分

M點(diǎn)的坐標(biāo)是(,4)      ……………………2分

設(shè)AM所在直線的解析式為    解得,b=2           

AM所在直線的解析式為  …………2分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


已知拋物線yax2經(jīng)過點(diǎn)A(-2,-8).

(1)求此拋物線的函數(shù)解析式;

(2)判斷點(diǎn)B(-1,-4)是否在此拋物線上;

(3)求出拋物線上縱坐標(biāo)為-6的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


我們?cè)谔K時(shí),繩甩到最高處的形狀可近似地看成是拋物線.如圖22­3­6所示,正在甩繩的甲、乙兩名學(xué)生拿繩的手間距為4 m,距地面均為1 m,學(xué)生丙、丁分別站在距甲拿繩的手水平距離1 m,2.5 m處,繩子在甩到最高處時(shí)剛好通過他們的頭頂.已知學(xué)生丙的身高是1.5 m,則學(xué)生丁的身高為(  )

圖22­3­6

A.1.5 m  B.1.625 m    C.1.66 m  D.1.67 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(4,2),點(diǎn)A的坐標(biāo)為(1,0),以點(diǎn)P為圓心,AP長(zhǎng)為半徑作弧,與x軸交于點(diǎn)B,則點(diǎn)B的坐標(biāo)為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,將四邊形ABCD稱為“基本圖形”,且各點(diǎn)的坐標(biāo)分別為A(4,4),B(1,3),C(3,3),D(3,1).

(1)畫出“基本圖形”關(guān)于原點(diǎn)O對(duì)稱的四邊形A1B1C1D1,并寫出A1點(diǎn)的坐標(biāo),

A1(    ,     );

(2)畫出“基本圖形”關(guān)于x軸的對(duì)

稱圖形A2B2C2D2,并寫出B2點(diǎn)的坐標(biāo),

B2(     ,     ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


三條邊的長(zhǎng)度都擴(kuò)大3倍,則銳角A的三角函數(shù)值(   )

A.也擴(kuò)大3倍       B.縮小為原來的   C.都不變        D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,雙曲線y=-x<0)經(jīng)過四邊形OABC的頂點(diǎn)AC,∠ABC=90°,OC平分OAx軸負(fù)半軸的夾角,ABx軸,將△ABC沿AC翻折后得到△A B'C,B'點(diǎn)落在OA上,則四邊形OABC的面積是(           )

A.  2     B.   3     C.         D.  4

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某校決定添置一些跳繩和排球.需要的跳繩的數(shù)量是排球數(shù)量的3倍,購(gòu)買的總費(fèi)用不低于2200元,但不高于2500元.

(1)商場(chǎng)內(nèi)跳繩的售價(jià)為20元/根,排球的售價(jià)為50元/個(gè),按照學(xué)校所定的費(fèi)用,有幾種購(gòu)買方案?每種方案中跳繩和排球數(shù)量各為多少?

(2)由于購(gòu)買數(shù)量較多,該商場(chǎng)規(guī)定20元/根的跳繩可打九折,50元/個(gè)的排球可打八折,用(2)中的最少費(fèi)用,最多還可以多買多少跳繩和排球(按照學(xué)校所需跳繩與排球的數(shù)量比)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在菱形ABCD中,對(duì)角線ACBD交于點(diǎn)O,如果∠ABC=60°,AC=4,那么該菱形的面積是(   )

A.                     B.16                          C.                       D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案