若關(guān)于x的方程mx2-2(m+2)x+m+5=0無實根,則關(guān)于x的方程(m-6)x2-2(m+2)x+m=0的根的情況是 .
【答案】分析:由關(guān)于x的方程mx2-2(m+2)x+m+5=0無實根,得△=4(m+2)2-4m(m+5)<0,即-4m+16<0,即m>4;對于方程(m-6)2-2(m+2)x+m=0,分兩種情況:若m=6,則它是一次方程,顯然,此時有且只有一個解;若m≠6,則它是一元二次方程,則△=4(m+2)2-4m(m-6)=4(10m+4),可判斷方程有兩個不相的實根.最后綜合回答即可.
解答:解:∵方程mx2-2(m+2)x+m+5=0無實根.
∴△=4(m+2)2-4m(m+5)<0,即-4m+16<0,
∴m>4,
對于方程(m-6)2-2(m+2)x+m=0,
若m=6,則它是一次方程,顯然,此時有且只有一個解;
若m≠6,則它是一元二次方程,則△=4(m+2)2-4m(m-6)=4(10m+4),
由m>4,則有4(10m+4)>0,即△>0.
故當(dāng)m>4且m≠6時,此方程有兩個不相的實根.
所以當(dāng)m=6時,方程(m-6)x2-2(m+2)+m=0有且只有一個實根;當(dāng)m>4且m≠6時,它有兩個不等實根.
故答案為當(dāng)m=6時,方程有且只有一個實根;當(dāng)m>4且m≠6時,它有兩個不等實根.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.同時考查了一元一次方程和一元二次方程的定義以及分類討論思想的運用.