【提出問題】
(1)如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點(diǎn)M是BC延長線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.
(1)證明見解析;(2)結(jié)論∠ABC=∠ACN仍成立;理由見解析;(3)∠ABC=∠ACN;理由見解析.
【解析】
試題分析:(1)利用SAS可證明△BAM≌△CAN,繼而得出結(jié)論;
(2)也可以通過證明△BAM≌△CAN,得出結(jié)論,和(1)的思路完全一樣.
(3)首先得出∠BAC=∠MAN,從而判定△ABC∽△AMN,得到,根據(jù)∠BAM=∠BAC-∠MAC,∠CAN=∠MAN-∠MAC,得到∠BAM=∠CAN,從而判定△BAM∽△CAN,得出結(jié)論.
試題解析:(1) 證明:∵△ABC、△AMN是等邊三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
∵在△BAM和△CAN中,
∴△BAM≌△CAN(SAS),
∴∠ABC=∠ACN.
(2)【解析】
結(jié)論∠ABC=∠ACN仍成立;
理由如下:∵△ABC、△AMN是等邊三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
∵在△BAM和△CAN中,
∴△BAM≌△CAN(SAS),
∴∠ABC=∠ACN.
(3)【解析】
∠ABC=∠ACN;
理由如下:∵BA=BC,MA=MN,頂角∠ABC=∠AMN,
∴底角∠BAC=∠MAN,
∴△ABC∽△AMN,
∴,
又∵∠BAM=∠BAC-∠MAC,∠CAN=∠MAN-∠MAC,
∴∠BAM=∠CAN,
∴△BAM∽△CAN,
∴∠ABC=∠ACN.
考點(diǎn):1.相似三角形的判定與性質(zhì);2.全等三角形的判定與性質(zhì);3.等邊三角形的性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖是一圓柱形輸水管的橫截面,陰影部分為有水部分,如果水面AB寬為8cm,水面最深地方的高度為2cm,則該輸水管的半徑為( 。
A.3cm B.4cm C.5cm D.6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年福建省福鼎市十校教研聯(lián)合體九年級上學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知△ABC三個頂點(diǎn)的坐標(biāo)分別為A(-1,2),B(-3,4)C(-2,6)
(1)畫出△ABC繞點(diǎn)A順時針旋轉(zhuǎn)90°后得到的△A1B1C1
(2)以原點(diǎn)O為位似中心,畫出將△A1B1C1三條邊放大為原來的2倍后的△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年福建省福鼎市十校教研聯(lián)合體九年級上學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:填空題
已知△ABC∽△DEF,若△ABC與△DEF的相似比為3∶4,則△ABC與△DEF的面積比為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市門頭溝區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
小明遇到這樣一個問題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=3,PB=4,PC=5,求∠APB度數(shù).小明發(fā)現(xiàn),利用旋轉(zhuǎn)和全等的知識構(gòu)造△AP′C,連接PP′,得到兩個特殊的三角形,從而將問題解決(如圖2).
圖1
請回答:圖1中∠APB的度數(shù)等于 ,圖2中∠PP′C的度數(shù)等于 .
參考小明思考問題的方法,解決問題:
如圖3,在平面直角坐標(biāo)系xOy中,點(diǎn)A坐標(biāo)為(,1),連接AO.如果點(diǎn)B是x軸上的一動點(diǎn),以AB為邊作等邊三角形ABC. 當(dāng)C(x,y)在第一象限內(nèi)時,求y與x之間的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市懷柔區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
在某一時刻,測得一根高為1.2m的木棍的影長為2m,同時測得一根旗桿的影長為25m,那么這根旗桿的高度為
A.15m B.m C. 60 m D.m
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com