作业宝已知,如圖,AB=AE,BC=ED,∠B=∠E,AF⊥CD,F(xiàn)為垂足,求證:FC=FD.

證明:
連接AC、AD,
∵在△ABC和△AED中

∴△ABC≌△AED,
∴AC=AD,
∵AF⊥D,
∴FC=FD.
分析:連接AC、AD,根據(jù)SAS推出△ABC≌△AED,推出AC=AD,根據(jù)等腰三角形性質推出即可.
點評:本題考查了全等三角形的性質和判定和等腰三角形性質的應用,注意:全等三角形的對應邊相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、已知:如圖,AB、AC分別切⊙O于B、C,D是⊙O上一點,∠D=40°,則∠A的度數(shù)等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,AB,CD相交于點O,且OA•OD=OB•OC,求證:AC∥DB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,AB是⊙O的直徑,AC是弦,直線EF是過點C的⊙O的切線,AD⊥EF于點D.
(1)求證:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求
AC
的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

29、已知,如圖,AB∥CD,∠EAB+∠FDC=180°.求證:AE∥FD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,AB=AC,DB=DC,求證:∠B=∠C.

查看答案和解析>>

同步練習冊答案