已知:如圖,M是的中點(diǎn),過(guò)點(diǎn)M的弦MN交AB于點(diǎn)C,設(shè)⊙O的半徑為4cm,MN=4cm.

(1)求圓心O到弦MN的距離;
(2)求∠ACM的度數(shù).
解:(1)連結(jié)OM,作OD⊥MN于D

∵點(diǎn)M是的中點(diǎn),∴OM⊥AB. 
過(guò)點(diǎn)O作OD⊥MN于點(diǎn)D,
由垂徑定理,得
在Rt△ODM中,OM=4,,∴OD=
故圓心O到弦MN的距離為2 cm.
(2)cos∠OMD=,
∴∠OMD=30°,∴∠ACM=60°.
(1)連接OM,作OD⊥MN于D.根據(jù)垂徑定理和勾股定理求解;
(2)根據(jù)(1)中的直角三角形的邊求得∠M的度數(shù).再根據(jù)垂徑定理的推論發(fā)現(xiàn)OM⊥AB,即可解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,∠BAC=30°,以AB為直徑的⊙O經(jīng)過(guò)點(diǎn)C.過(guò)點(diǎn)C作⊙O的切線(xiàn)交AB的延長(zhǎng)線(xiàn)于點(diǎn)P.點(diǎn)D為圓上一點(diǎn),且,弦AD的延長(zhǎng)線(xiàn)交切線(xiàn)PC于點(diǎn)E,連接BC.
(1)判斷OB和BP的數(shù)量關(guān)系,并說(shuō)明理由;
(2)若⊙O的半徑為2,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,圓的外接圓,的平分線(xiàn)相交于點(diǎn),延長(zhǎng)交圓于點(diǎn),連結(jié)

(1)求證:;
(2)若圓的半徑為10cm,,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,是半徑為上的定點(diǎn),動(dòng)點(diǎn)出發(fā),以的速度沿圓周逆時(shí)針運(yùn)動(dòng),當(dāng)點(diǎn)回到地立即停止運(yùn)動(dòng).

(1)如果,求點(diǎn)運(yùn)動(dòng)的時(shí)間;
(2)如果點(diǎn)延長(zhǎng)線(xiàn)上的一點(diǎn),,那么當(dāng)點(diǎn)運(yùn)動(dòng)的時(shí)間為時(shí),判斷直線(xiàn)的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,形如量角器的半圓O的直徑DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=
30°,BC=12cm.半圓O以2cm/s的速度從左向右運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,點(diǎn)DE始終在直線(xiàn)BC上.設(shè)運(yùn)動(dòng)時(shí)間為t (s),當(dāng)t=0s時(shí),半圓O在△ABC的左側(cè),OC=8cm.

(1)當(dāng)t為何值時(shí),△ABC的一邊所在的直線(xiàn)與半圓O所在的圓相切?    
(2)當(dāng)△ABC的一邊所在的直線(xiàn)與半圓O所在的圓相切時(shí),如果半圓O與直徑DE圍成的區(qū)域與△ABC三邊圍成的區(qū)域有重疊部分,求重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AC是圓O的直徑,AC=10厘米,PA,PB是圓O的切線(xiàn),A,B為切點(diǎn),過(guò)A作AD⊥BP,交BP于D點(diǎn),連結(jié)AB、BC.

(1)求證△ABC∽△ADB;
(2)若切線(xiàn)AP的長(zhǎng)為12厘米,求弦AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,以為圓心的兩個(gè)同心圓中,大圓的弦是小圓的切線(xiàn).若大圓半徑為,小圓半徑為,則弦的長(zhǎng)為        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示的兩圓位置關(guān)系是(    )
A.相離B.外切C.相交D.內(nèi)切

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖1是一種帶有黑白雙色、邊長(zhǎng)是20cm的正方形裝飾瓷磚,用這樣的四塊瓷磚可以拼成如圖2的圖案.已知制作圖1這樣的瓷磚,其黑、白兩部分所用材料的成本分別

查看答案和解析>>

同步練習(xí)冊(cè)答案