如圖,一張矩形紙片ABCD,其中AB=2,BC=3,將該紙片沿對角線BD折疊,則陰影部分的面積為
 
考點(diǎn):翻折變換(折疊問題)
專題:
分析:易得BF=DF,利用勾股定理求得DF的長,利用三角形的面積公式可得陰影部分的面積.
解答:解:根據(jù)翻折的性質(zhì)可知:∠FBD=∠DBC,
又∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ADB=∠FBD,
∴BF=DF,
設(shè)BF=DF=x,
∴AF=3-x,
∵四邊形ABCD是矩形,
∴∠A=90°,
∴AF2+AB2=BF2,
(3-x)2+22=x2
解得x=
13
6
,
∴S△FDB=
1
2
×
13
6
×2=
13
6

故答案為:
13
6
點(diǎn)評:本題考查了折疊的性質(zhì):折疊前后的兩個圖形全等,即對應(yīng)線段相等,對應(yīng)角相等.同時也考查了勾股定理,利用勾股定理得到DF的長是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與x軸相交于B、C兩點(diǎn),與y軸相交于點(diǎn)A,P(a,-a2+
7
2
a+m)(a為任意實(shí)數(shù))在拋物線上,直線y=kx+b經(jīng)過A、B兩點(diǎn),平行于y軸的直線x=2交直線AB于點(diǎn)D,交拋物線于點(diǎn)E.
(1)若m=2,
①求直線AB的解析式;
②直線x=t(0≤t≤4)與直線AB相交于點(diǎn)F,與拋物線相交于點(diǎn)G.若FG:DE=3:4,求t的值;
(2)當(dāng)EO平分∠AED時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某校研究性學(xué)習(xí)小組測量學(xué)校旗桿AB的高度,如圖在教學(xué)樓一樓C處測得旗桿頂部的仰角為67°,在教學(xué)樓三樓D處測得旗桿頂部的仰角為37°,旗桿底部與教學(xué)樓一樓在同一水平線上,已知每層的高度為3m,求旗桿AB的高度(精確到0.1m).(參考數(shù)據(jù):tan67°≈
12
5
,tan37°≈
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,以AC邊為直徑的⊙O交BC于點(diǎn)D,在劣弧
AD
上取一點(diǎn)E使∠EBC=∠DEC,延長BE依次交AC于G,交⊙O于H.
(1)求∠AGB的度數(shù);
(2)若∠ABC=45°,⊙O的直徑等于17,BD=15,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=7,AD=4,CA=5,動點(diǎn)M以每秒1個單位長的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動;同時點(diǎn)P以相同的速度,從點(diǎn)C沿折線C→D→A向點(diǎn)A運(yùn)動.當(dāng)點(diǎn)M到達(dá)點(diǎn)B時,兩點(diǎn)同時停止運(yùn)動.過點(diǎn)M作直線l∥AD,與線段CD交于點(diǎn)E,與折線A-C-B的交點(diǎn)為Q,設(shè)點(diǎn)M的運(yùn)動時間為t.
(1)當(dāng)點(diǎn)P在線段CD上時,CE=
 
,CQ=
 
;(用含t的代數(shù)式表示)
(2)在(1)的條件下,如果以C、P、Q為頂點(diǎn)的三角形為等腰三角形,求t的值;
(3)當(dāng)點(diǎn)P運(yùn)動到線段AD上時,PQ與AC交于點(diǎn)G,若S△PCG:S△CQG=1:3,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AD是∠BAC的平分線,在不添加任何輔助線的前提下,要使△AED≌△AFD,還需添加一個條件,這個條件可以是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的頂點(diǎn)O在AB上,OM、ON分別交CA、CB于點(diǎn)P、Q,∠MON繞點(diǎn)O任意旋轉(zhuǎn).當(dāng)
OA
OB
=
1
2
時,
OP
OQ
的值為
 
;當(dāng)
OA
OB
=
1
n
時,為
 
.(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,⊙O1的半徑為6,⊙O2的半徑為8,且⊙O1與⊙O2相切,則這兩圓的圓心距為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(-2,2).
(1)如圖(1),在△ABO為等腰直角三角形,求B點(diǎn)坐標(biāo).
(2)如圖(1),在(1)的條件下,分別以AB和OB為邊作等邊△ABC和等邊△OBD,連結(jié)OC,求∠COB的度數(shù).
(3)如圖(2),過點(diǎn)A作AM⊥y軸于點(diǎn)M,點(diǎn)E為x軸正半軸上一點(diǎn),K為ME延長線上一點(diǎn),以MK為直角邊作等腰直角三角形MKJ,∠MKJ=90°,過點(diǎn)A作AN⊥x軸交MJ于點(diǎn)N,連結(jié)EN.則①
AN+OE
NE
的值不變;②
AN-OE
NE
的值不變,其中有且只有一個結(jié)論正確,請判斷出正確的結(jié)論,并加以證明和求出其值.

查看答案和解析>>

同步練習(xí)冊答案