【題目】如圖所示,某教學(xué)活動(dòng)小組選定測(cè)量小山上方某信號(hào)塔PQ的高度,他們?cè)?/span>A處測(cè)得信號(hào)塔頂端P的仰角為45°,信號(hào)塔低端Q的仰角為31°,沿水平地面向前走100米到處,測(cè)得信號(hào)塔頂端P的仰角為68°.求信號(hào)塔PQ的高度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin68°≈ 0.93,cos68° ≈ 0.37,tan68° ≈ 2.48,tan31° ≈ 0.60,sin31° ≈ 0.52,cos31°≈0.86)
【答案】信號(hào)塔PQ的高度約為67.0米
【解析】延長(zhǎng)PQ交直線(xiàn)AB于點(diǎn)E,連接AQ,設(shè)PM的長(zhǎng)為x米,先由三角函數(shù)得出方程求出PM,再由三角函數(shù)求出QM,得出PQ的長(zhǎng)度即可.
解:延長(zhǎng)PQ交直線(xiàn)AB于點(diǎn)M,
則∠PMA=90°,設(shè)PM的長(zhǎng)為x米,根據(jù)題意,
得∠PAM=45°,∠PBM=68°,∠QAM=31°,
AB=100,∴在Rt△PAM中,AM=PM=x.
BM=AM-AB=x-100,
在Rt△PBM中,∵tan∠PBM=,
即tan68°=.
解得x ≈ 167.57.∴AM=PM ≈ 167.57.
在Rt△QAM中,∵tan∠QAM=,
∴QM=AM·tan∠QAM=167.57×tan31°≈100.54.
∴PQ=PM-QM=167.57-100.54≈67.0(米).
因此,信號(hào)塔PQ的高度約為67.0米.
“點(diǎn)睛”本題考查直角三角形的應(yīng)用、三角函數(shù);由三角函數(shù)得出方程是解決問(wèn)題的關(guān)鍵,注意掌握當(dāng)兩個(gè)直角三角形有公共邊時(shí),先求出這條公共邊的邊長(zhǎng)是解答此類(lèi)題的一般思路.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代算書(shū)《九章算術(shù)》中第九章第六題是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問(wèn)水深葭長(zhǎng)各幾何?你讀懂題意了嗎?請(qǐng)回答水深______尺,葭長(zhǎng)_____尺.解:根據(jù)題意,設(shè)水深OB=x尺,則葭長(zhǎng)OA'=(x+1)尺.可列方程正確的是( 。
A. x2+52 =(x+1)2B. x2+52 =(x﹣1)2
C. x2+(x+1)2 =102D. x2+(x﹣1)2=52
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)△ODP是腰長(zhǎng)為5的等腰三角形時(shí),則P點(diǎn)的坐標(biāo)為( )
A. (3,4)或(2,4) B. (2,4)或(8,4)
C. (3,4)或(8,4) D. (3,4)或(2,4)或(8,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)A,B重合的動(dòng)點(diǎn),PC∥AB,點(diǎn)M是OP中點(diǎn).
(1)求證:四邊形OBCP是平行四邊形;
(2)填空:
①當(dāng)∠BOP= 時(shí),四邊形AOCP是菱形;
②連接BP,當(dāng)∠ABP= 時(shí),PC是⊙O的切線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A、B在x軸的正半軸上,反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)D,交BC于點(diǎn)E.若AB=4,CE=2BE,tan∠AOD=,則k的值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某八年級(jí)計(jì)劃用360元購(gòu)買(mǎi)筆記本獎(jiǎng)勵(lì)優(yōu)秀學(xué)生,在購(gòu)買(mǎi)時(shí)發(fā)現(xiàn),每本筆記本可以打九折,結(jié)果買(mǎi)得的筆記本比打折前多10本.
(1)請(qǐng)利用分式方程求出每本筆記本的原來(lái)標(biāo)價(jià);
(2)恰逢文具店周年志慶,每本筆記本可以按原價(jià)打8折,這樣該校最多可購(gòu)入本筆記本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為積極創(chuàng)建全國(guó)文明城市,我市對(duì)某路口的行人交通違章情況進(jìn)行了20天的調(diào)查,將所得的數(shù)據(jù)繪制成如下統(tǒng)計(jì)圖(圖2不完整):
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)第13天,這一路口的行人交通違章次數(shù)是 ;這20天中,行人交通違章7次的有 天.
(2)這20天中,行人交通違章6次的有 天;請(qǐng)把圖2中的頻數(shù)直方圖補(bǔ)充完整.
(3)請(qǐng)你根據(jù)圖2繪制一個(gè)扇形統(tǒng)計(jì)圖,并求行人違章9次的天數(shù)在扇形統(tǒng)計(jì)圖中所對(duì)的圓心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】紅星公司生產(chǎn)的某種時(shí)令商品每件成本為20元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來(lái)40天內(nèi)的 日銷(xiāo)售量(件)與時(shí)間(天)的關(guān)系如下表:
時(shí)間(天) | 1 | 3 | 6 | 10 | 36 | … |
日銷(xiāo)售量(件) | 94 | 90 | 84 | 76 | 24 | … |
未來(lái)40天內(nèi),前20天每天的價(jià)格y1(元/件)與t時(shí)間(天)的函數(shù)關(guān)系式為:y1=t+25(1≤t≤20且t為整數(shù));后20天每天的價(jià)格y2(原/件)與t時(shí)間(天)的函數(shù)關(guān)系式為:y2=—t+40(21≤t≤40且t為整數(shù)).下面我們來(lái)研究 這種商品的有關(guān)問(wèn)題.
(1)認(rèn)真分析上表中的數(shù)量關(guān)系,利用學(xué)過(guò)的一次函數(shù)、二次函數(shù) 、反比例函數(shù)的知識(shí)確定一個(gè)滿(mǎn)足這些數(shù)據(jù)之間的函數(shù)關(guān)系式;
(2)請(qǐng)預(yù)測(cè)未來(lái)40天中那一天的銷(xiāo)售利潤(rùn)最大,最大日銷(xiāo)售利潤(rùn)是多少?
(3)在實(shí)際銷(xiāo)售的前20天中該公司決定每銷(xiāo)售一件商品就捐贈(zèng)a元利潤(rùn)(a<4)給希望工程,公司通過(guò)銷(xiāo)售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈(zèng)后的日銷(xiāo)售利潤(rùn)隨時(shí)間t的增大而增大,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文化源遠(yuǎn)流長(zhǎng),文學(xué)方面,《西游記》、《三國(guó)演義》、《水滸傳》、《紅樓夢(mèng)》是我國(guó)古代長(zhǎng)篇小說(shuō)中的典型代表,被稱(chēng)為“四大古典名著”某中學(xué)為了解學(xué)生對(duì)四大名著的閱讀情況,就“四大古典名著你讀完了幾部”的問(wèn)題在全校學(xué)生中進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下尚不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息,解決下列問(wèn)題
(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是____部,中位數(shù)是_____部;
(2)扇形統(tǒng)計(jì)圖中“4部”所在扇形的圓心角為_____度;
(3)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)沒(méi)有讀過(guò)四大古典名著的兩名學(xué)生準(zhǔn)備從中各自隨機(jī)選擇一部來(lái)閱讀,求他們恰好選中同一名著的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com