【題目】國(guó)防教育和素質(zhì)拓展期間,某天小明和小亮分別從校園某條路的A,B兩端同時(shí)相向出發(fā),當(dāng)小明和小亮第一次相遇時(shí),小明覺(jué)得自己的速度太慢便決定提速至原速的倍,當(dāng)他到達(dá)B端后原地休息,小亮勻速到達(dá)A端后,立即按照原速返回B端(忽略掉頭時(shí)間).兩人相距的路程y(米)與小亮出發(fā)時(shí)間t(秒)之間的關(guān)系如圖所示,當(dāng)小明到達(dá)B端后,經(jīng)過(guò)_____秒,小亮回到B端.
【答案】56
【解析】
首先根據(jù)函數(shù)圖象得出小亮的速度,小明開(kāi)始的速度和提速后的速度,然后得出小明到達(dá)B地用的時(shí)間和小亮從B端出發(fā)到最后回到B端用的時(shí)間,即可得解.
由圖可得,
小亮的速度為:420÷70=6(米/秒),
小明剛開(kāi)始的速度為:420÷42﹣6=4(米/秒),提速后的速度為:4×=6(米/秒),
故小明到達(dá)B地用的時(shí)間為:42+(420﹣42×4)÷6=84(秒),
小亮從B端出發(fā)到最后回到B端用的時(shí)間為:420÷6×2=140(秒),
∵140﹣84=56(秒),
∴當(dāng)小明到達(dá)B端后,經(jīng)過(guò)56秒,小亮回到B端,
故答案為:56.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),在反比例函數(shù)的圖象上運(yùn)動(dòng),且始終保持線段的長(zhǎng)度不變.為線段的中點(diǎn),連接.則線段長(zhǎng)度的最小值是_____(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知M是平行四邊形ABCD中AB邊的三等分點(diǎn),BD與CM交于E,則陰影部分面積與平行四邊形面積比為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以為圓心作⊙,⊙與軸交于、,與軸交于點(diǎn),為⊙上不同于、的任意一點(diǎn),連接、,過(guò)點(diǎn)分別作于,于.設(shè)點(diǎn)的橫坐標(biāo)為,.當(dāng)點(diǎn)在⊙上順時(shí)針從點(diǎn)運(yùn)動(dòng)到點(diǎn)的過(guò)程中,下列圖象中能表示與的函數(shù)關(guān)系的部分圖象是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,點(diǎn)為邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合).以為頂點(diǎn)作,射線交邊于點(diǎn),過(guò)點(diǎn)作交射線于點(diǎn).
(1)求證:;
(2)當(dāng)平分時(shí),求的長(zhǎng);
(3)當(dāng)是等腰三角形時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BD于E.
(1)若BC=BD,,AD=15,求△ABD的周長(zhǎng).
(2)若∠DBC=45°,對(duì)角線AC、BD交于點(diǎn)O,F為AE上一點(diǎn),且AF=2EO,求證:CF=AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某林場(chǎng)計(jì)劃購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共800株,甲種樹(shù)苗每株24元,乙種樹(shù)苗每株30元,購(gòu)買(mǎi)這兩種樹(shù)苗共用去21000元.求甲、乙兩種樹(shù)苗各購(gòu)買(mǎi)了多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖AM∥BN,C是BN上一點(diǎn), BD平分∠ABN且過(guò)AC的中點(diǎn)O,交AM于點(diǎn)D,DE⊥BD,交BN于點(diǎn)E.
(1)求證:△ADO≌△CBO.
(2)求證:四邊形ABCD是菱形.
(3)若DE = AB = 2,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,利用一面長(zhǎng)為34米的墻,用鐵柵欄圍成一個(gè)矩形自行車(chē)場(chǎng)地ABCD,在AB和BC邊各有一個(gè)2米寬的小門(mén)(不用鐵柵欄).設(shè)矩形ABCD的邊AD長(zhǎng)為x米,AB長(zhǎng)為y米,矩形的面積為S平方米,且x<y.
(1)若所用鐵柵欄的長(zhǎng)為40米,求y與x的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;
(2)在(1)的條件下,求S與x的函數(shù)關(guān)系式,并求出怎樣圍才能使矩形場(chǎng)地的面積為192平方米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com