【題目】已知關(guān)于x的一元二次方程-(k+2)x+2k=0.

(1)試說明無論k取何值時,這個方程一定有實(shí)數(shù)根;

(2)已知等腰的一邊a=1,若另兩邊b、c恰好是這個方程的兩個根,求的周長.

【答案】(1)證明詳見解析;(25.

【解析】

試題用一元二次方程的判別式來判斷方程的解的情況,如果判別式大于0,說明一元二次方程有兩個不相等的實(shí)數(shù)根,如果判別式等于0,說明一元二次方程有兩個相等的實(shí)數(shù)根,如果判別式小于0,說明一元二次方程沒有實(shí)數(shù)根.說明此方程有實(shí)數(shù)根,只要能證明該方程中得△≥0即可求解.

兩腰b、c恰好是這個方程的兩個根,說明此方程有兩個相等的實(shí)數(shù)根.△=0.由(1)可知k的取值,然后將k的值代入原方程求根.最后計算△ABC的周長即可.

試題解析:

解:(1

無論取何值時,方程一定有實(shí)數(shù)根.

由(1)可知:,即

解得:K=2

當(dāng)時,

解得:

b=c=2

∴△ABC的周長=2+2+1=5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系中的位置如圖所示A、BC三點(diǎn)在格點(diǎn)上.

1)作出ABC關(guān)于x軸對稱的A1B1C1,并寫出點(diǎn)C1的坐標(biāo);

2)作出ABC關(guān)于y對稱的A2B2C2,并寫出點(diǎn)C2的坐標(biāo).

3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,以AB為直徑作半圓⊙OAC于點(diǎn)D,點(diǎn)EBC的中點(diǎn),連接DE.

(1)求證:DE是半圓⊙O的切線;

(2)若∠BAC=30°,DE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分DAB,ADC=ACB=90°,E為AB的中點(diǎn),

(1)求證:AC2=ABAD;

(2)求證:CEAD;

(3)若AD=4,AB=6,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC、△ADC、△AMN均為等邊三角形,AM>AB,AMDC交于點(diǎn)E,ANBC交于點(diǎn)F.

(1)試說明:△ABF≌△ACE;

(2)猜測△AEF的形狀,并說明你的結(jié)論;

(3)請直接指出當(dāng)F點(diǎn)在BC何處時,AC⊥EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6cm,BC=12cm.. 點(diǎn)M從點(diǎn)A開始沿AB邊向點(diǎn)B1cm/秒的速度向B點(diǎn)移動,點(diǎn)N從點(diǎn)B開始沿BC邊以2cm/秒的速度向點(diǎn)C移動. M, N分別從A, B點(diǎn)同時出發(fā),設(shè)移動時間為t (0<t<6),△DMN的面積為S.

(1) S關(guān)于t的函數(shù)關(guān)系式,并求出S的最小值;

(2) 當(dāng)△DMN為直角三角形時,求△DMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,∠ACB=90°,AC=BC,AE BC 邊的中線,過點(diǎn)C CF⊥AE,垂足為點(diǎn) F,過點(diǎn) B BD⊥BC CF 的延長線于點(diǎn) D.

(1)試證明:AE=CD;

(2)若 AC=12cm,求線段 BD 的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】夾在兩條平行線間的正方形ABCD、等邊三角形DEF如圖所示,頂點(diǎn)A、F分別在兩條平行線上.若A、D、F在一條直線上,則∠1與∠2的數(shù)量關(guān)系是( 。

A. 1+2=60° B. 2﹣1=30° C. 1=22. D. 1+22=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)課上,張老師出示了一個題目:如圖,ABCD的對角線相交于點(diǎn)O,過點(diǎn)OEF垂直于BDAB,CD分別于點(diǎn)F,E,連接DF,BE.請根據(jù)上述條件,寫出一個正確結(jié)論.其中四位同學(xué)寫出的結(jié)論如下:

小青:OE=OF;小何:四邊形DFBE是正方形;

小夏:S四邊形AFED=S四邊形FBCE;小雨:∠ACE=CAF.

這四位同學(xué)寫出的結(jié)論中不正確的是( 。

A. 小青 B. 小何 C. 小夏 D. 小雨

查看答案和解析>>

同步練習(xí)冊答案