【題目】如圖,平行四邊形ABCD中,AB3cm,BC5cm,B60°GCD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)F,連接CE,DF.

(1)求證:四邊形CEDF是平行四邊形;

(2)AE為何值時(shí)四邊形CEDF是矩形?為什么?

AE為何值時(shí)四邊形CEDF是菱形?為什么?

【答案】見(jiàn)解析

【解析】試題分析: (1)證△CFG≌△EDG,推出FG=EG,根據(jù)平行四邊形的判定推出即可,(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根據(jù)矩形的判定推出即可,②求出△CDE是等邊三角形,推出CE=DE,根據(jù)菱形的判定推出即可.

試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴CFED,∴∠FCG=∠EDG,∵GCD的中點(diǎn),∴CG=DG,在△FCG和△EDG,

,

∴△FCG≌△EDG(ASA),

FG=EG,

∵CG=DG,

∴四邊形CEDF是平行四邊形,

(2)① 當(dāng)AE=3.5時(shí),平行四邊形CEDF是矩形,理由是:過(guò)AAMBCM,

∵∠B=60°,AB=3,∴BM=1.5,

∵四邊形ABCD是平行四邊形,

∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,

AE=3.5,

DE=1.5=BM,

在△MBA和△EDC,

,

∴△MBA≌△EDC(SAS),

∴∠CED=∠AMB=90°,

∵四邊形CEDF是平行四邊形,

∴四邊形CEDF是矩形,故答案為:3.5,

②當(dāng)AE=2時(shí),四邊形CEDF是菱形,理由是:

AD=5,AE=2,

DE=3,

CD=3,∠CDE=60°,

∴△CDE是等邊三角形,

CE=DE,

∵四邊形CEDF是平行四邊形,

∴四邊形CEDF是菱形,故答案為:2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程:

(1) 2(x+1)=3(x+1); (2)4-2(x-3)=x-5; 

(3) -1; (4)3x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工程隊(duì)由甲乙兩隊(duì)組成,承包我市河?xùn)|東街改造工程,規(guī)定若干天完成,已知甲單獨(dú)完成這項(xiàng)工程所需時(shí)間比規(guī)定時(shí)間多32天,乙隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間比規(guī)定時(shí)間多12天,如果甲乙兩隊(duì)先合作20天,剩下的甲單獨(dú)做,則延誤兩天完成,那么規(guī)定時(shí)間是多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作發(fā)現(xiàn):

(1)數(shù)學(xué)活動(dòng)課上,小明將已知ABO(如圖1)繞點(diǎn)O旋轉(zhuǎn)180°得到CDO(如圖2).小明發(fā)現(xiàn)線段ABCD有特殊的關(guān)系,請(qǐng)你寫(xiě)出:線段ABCD的關(guān)系是

(2)連結(jié)AD(如圖3),觀察圖形,試說(shuō)明AB+AD>2AO.

(3)連結(jié)BC(如圖4),觀察圖形,直接寫(xiě)出圖中全等的三角形:

(寫(xiě)出三對(duì)即可)    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了鼓勵(lì)市民節(jié)約用電,某市對(duì)居民用電實(shí)行階梯收費(fèi)(總電費(fèi)=第一階梯電費(fèi)+第二階梯電費(fèi)).規(guī)定:用電量不超過(guò)200度按第一階梯電價(jià)收費(fèi),超過(guò)200度的部分按第二階梯電價(jià)收費(fèi).如圖是張磊家20181月和3月所交電費(fèi)的收據(jù),則該市規(guī)定的第一階梯電價(jià)和第二階梯電價(jià)分別為每度( 。

A. 0.5元、0.6 B. 0.4元、0.5 C. 0.3元、0.4 D. 0.6元、0.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段ABCD的公共部分BD=AB= CD線段AB、CD的中點(diǎn)E,F之間距離是10cm,AB,CD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)市政府創(chuàng)建國(guó)家森林城市的號(hào)召,某小區(qū)計(jì)劃購(gòu)進(jìn)A、B兩種樹(shù)苗已知2A種樹(shù)苗和3B種樹(shù)苗共需270元,3A種樹(shù)苗和6B種樹(shù)苗共需480元.

、B兩種樹(shù)苗的單價(jià)分別是多少元?

該小區(qū)計(jì)劃購(gòu)進(jìn)兩種樹(shù)苗共28棵,總費(fèi)用不超過(guò)1550元,問(wèn)最多可以購(gòu)進(jìn)A種樹(shù)苗多少棵.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)經(jīng)過(guò)點(diǎn)(﹣1,0),(m,0),且1<m<2,當(dāng)x<﹣1時(shí),y隨x增大而減小,下列結(jié)論: ①abc>0;
②a+b<0;
③若點(diǎn)A(﹣3,y1),B(3,y2)在拋物線上,則y1<y2
④a(m﹣1)+b=0;
⑤c≤﹣1時(shí),則b2﹣4ac≤4a.
其中結(jié)論正確的有

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)課上,老師提出如下問(wèn)題:

尺規(guī)作圖:作對(duì)角線等于已知線段的菱形.

已知:兩條線段、

求作:菱形,使得其對(duì)角線分別等于

小軍的作法如下:

如圖

)畫(huà)一條線段等于

)分別以為圓心,大于的長(zhǎng)為半徑,在線段的上下各作兩條弧,兩弧相交于、兩點(diǎn).

)作直線點(diǎn).

)以點(diǎn)為圓心,線段的長(zhǎng)為半徑作兩條弧,交直線、兩點(diǎn),連接、、

所以四邊形就是所求的菱形.

老師說(shuō):小軍的作法正確”.

該作圖的依據(jù)是_____________________

查看答案和解析>>

同步練習(xí)冊(cè)答案