【題目】在距離大足城區(qū)的1.5公里的北山之上,有一處密如峰房的石窟造像點,今被稱為北山石窟.北山石窟造像在兩宋時期達到鼎盛,逐漸都成了以北山佛灣為中心,環(huán)繞營盤坡、佛耳巖,觀音坡、多寶塔等多處造像點的大型石窟群.多寶塔,也稱為“白塔”“北塔”,于巖石之上,為八角形閣式磚塔,外觀可辨十二級,其內(nèi)有八層樓閣,可沿著塔心內(nèi)的梯道逐級而上,元且期間,小華和媽媽到大足北山游玩,小華站在坡度為l=1:2的山坡上的B點觀看風景,恰好看到對面的多寶培,測得眼睛A看到塔頂C的仰角為30°,接著小華又向下走了10米,剛好到達坡底E,這時看到塔頂C的仰角為45°,若AB=1.5米,則多寶塔的高度CD約為( 。ň_到0.1米,參考數(shù)據(jù)≈1.732)
A. 51.0米B. 52.5米C. 27.3米D. 28.8米
【答案】B
【解析】
如圖,設(shè)CD=x米.延長AB交DE于H,作AM⊥CD于M,A′N⊥CD于N.想辦法構(gòu)建方程求出x即可.
解:如圖,設(shè)CD=x米.延長AB交DE于H,作AM⊥CD于M,A′N⊥CD于N.
在Rt△BHE中,∵BE=10米,BH:EH=1:2,
∴BH=10(米),EH=20(米),
∵四邊形AHDM是矩形,四邊形A′EDN是矩形,
∴AM=DH,AH=DM,A′N=DE,A′E=DN=1.5(米),
在Rt△CA′N中,∵∠CA′N=45°,
∴CN=A′N=DE=(x﹣1.5)(米),
∵AM=DH=(20+x﹣1.5)(米),CM=(x﹣5)(米),
在Rt△ACM中,∵∠CAM=30°,
∴AM=CM,
∴20+x﹣1.5=(x﹣11.5),
∴x≈52.5,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點M,N的坐標分別為(﹣1,2),(2,1),若拋物線y=ax2﹣x+2(a≠0)與線段MN有兩個不同的交點,則a的取值范圍是( 。
A. a≤﹣1或≤a< B. ≤a<
C. a≤或a> D. a≤﹣1或a≥
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線的頂點M在直線L:上.
求直線L的函數(shù)表達式;
現(xiàn)將拋物線沿該直線L方向進行平移,平移后的拋物線的頂點為N,與x軸的右交點為C,連接NC,當時,求平移后的拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB與⊙O相切于點C,OA,OB分別交⊙O于點D,E,弧CD=弧CE.
(1)求證:OA=OB
(2)已知AB=4,OA=4,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由于世界人口增長、水污染以及水資源浪費等原因,全世界面臨著淡水資源不足的問題,我國是世界上嚴重缺水的國家之一,人均占水量僅為2400m3左右,我國已被聯(lián)合國列為13個貧水國家之一,合理利用水資源是人類可持續(xù)發(fā)展的當務(wù)之急,而節(jié)約用水是水資源合理利用的關(guān)鍵所在,是最快捷、最有效、最可行的維護水資源可持續(xù)利用的途徑之一,為了調(diào)查居民的用水情況,有關(guān)部門對某小區(qū)的20戶居民的月用水量進行了調(diào)查,數(shù)據(jù)如下:(單位:t)
6.7 | 8.7 | 7.3 | 11.4 | 7.0 | 6.9 | 11.7 | 9.7 | 10.0 | 9.7 |
7.3 | 8.4 | 10.6 | 8.7 | 7.2 | 8.7 | 10.5 | 9.3 | 8.4 | 8.7 |
整理數(shù)據(jù) 按如下分段整理樣本數(shù)據(jù)并補至表格:(表1)
用水量x(t) | 6.0≤x<7.5 | 7.5≤x<9.0 | 9.0≤x<10.5 | 10.5≤x<12 |
人數(shù) | a | 6 | b | 4 |
分析數(shù)據(jù),補全下列表格中的統(tǒng)計量;(表2)
平均數(shù) | 中位數(shù) | 眾數(shù) |
8.85 | c | d |
得出結(jié)論:
(1)表中的a= ,b= ,c= ,d= .
(2)若用表1中的數(shù)據(jù)制作一個扇形統(tǒng)計圖,則9.0≤x<10.5所示的扇形圓心角的度數(shù)為 度.
(3)如果該小區(qū)有住戶400戶,請根據(jù)樣本估計用水量在6.0≤x<9.0的居民有多少戶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名同學在一次用頻率去估計概率的實驗中,繪出了某一結(jié)果出現(xiàn)的頻率的折線圖,則符合這一結(jié)果的實驗可能是
A. 擲一枚正六面體的骰子,出現(xiàn)1點的概率
B. 拋一枚硬幣,出現(xiàn)正面的概率
C. 任意寫一個整數(shù),它能被2整除的概率
D. 從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,點A(﹣,0),點B(0,1)把△ABO繞點O順時針旋轉(zhuǎn),得△A'B'O,點A,B旋轉(zhuǎn)后的對應(yīng)點為A',B',記旋轉(zhuǎn)角為α(0°<α<360°).
(1)如圖①,當點A′,B,B′共線時,求AA′的長.
(2)如圖②,當α=90°,求直線AB與A′B′的交點C的坐標;
(3)當點A′在直線AB上時,求BB′與OA′的交點D的坐標(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于點,交軸于點,直線過點與軸交于點,與拋物線的另一個交點為,作軸于點.設(shè)點是直線上方的拋物線上一動點(不與點、重合),過點作軸的平行線,交直線于點,作于點.
(1)填空:__________,__________,__________;
(2)探究:是否存在這樣的點,使四邊形是平行四邊形?若存在,請求出點的坐標;若不存在,請說明理由;
(3)設(shè)的周長為,點的橫坐標為,求與的函數(shù)關(guān)系式,并求出的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com