【題目】閱讀理解:

我們知道,四邊形具有不穩(wěn)定性,容易變形,如圖1,一個(gè)矩形發(fā)生變形后成為一個(gè)平行四邊形,設(shè)這個(gè)平行四邊形相鄰兩個(gè)內(nèi)角中較小的一個(gè)內(nèi)角為α,我們把的值叫做這個(gè)平行四邊形的變形度.

(1)若矩形發(fā)生變形后的平行四邊形有一個(gè)內(nèi)角是120度,則這個(gè)平行四邊形的變形度是

猜想證明:

(2)設(shè)矩形的面積為S1,其變形后的平行四邊形面積為S2,試猜想S1,S2,之間的數(shù)量關(guān)系,并說(shuō)明理由;

拓展探究:

(3)如圖2,在矩形ABCD中,E是AD邊上的一點(diǎn),且=AEAD,這個(gè)矩形發(fā)生變形后為平行四邊形A1B1C1D1,E1為E的對(duì)應(yīng)點(diǎn),連接B1E1,B1D1,若矩形ABCD的面積為(m>0),平行四邊形A1B1C1D1的面積為(m>0),試求∠A1E1B1+∠A1D1B1的度數(shù).

【答案】(1);(2);(3)30°.

【解析】

試題分析:(1)根據(jù)平行四邊形的性質(zhì)得到α=60°,根據(jù)三角函數(shù)的定義即可得到結(jié)論;

(2)如圖1,設(shè)矩形的長(zhǎng)和寬分別為a,b,變形后的平行四邊形的高為h,根據(jù)平行四邊形和矩形的面積公式即可得到結(jié)論;

(3)由已知條件得到△B1A1E1∽△D1A1B1,由相似三角形的性質(zhì)得到∠A1B1E1=∠A1D1B1,根據(jù)平行線的性質(zhì)得到∠A1E1B1=∠C1B1E1,求得∠A1E1B1+∠A1D1B1=∠C1E1B1+∠A1B1E1=∠A1B1C1,證得∠A1B1C1=30°,于是得到結(jié)論.

試題解析:(1)∵平行四邊形有一個(gè)內(nèi)角是120度,∴α=60°,∴==;

故答案為:

(2),理由:如圖1,設(shè)矩形的長(zhǎng)和寬分別為a,b,變形后的平行四邊形的高為h,∴S1=ab,S2=ah,sinα=,∴==,∵=,∴;

(3)∵=AEAD,∴=A1E1A1D1,即,∵∠B1A1E1=∠D1A1B1,∴△B1A1E1∽△D1A1B1,∴∠A1B1E1=∠A1D1B1,∵A1D1∥B1C1,∴∠A1E1B1=∠C1B1E1,∴∠A1E1B1+∠A1D1B1=∠C1E1B1+∠A1B1E1=∠A1B1C1,由(2)知,可知==2,∴sin∠A1B1C1=,∴∠A1B1C1=30°,∴∠A1E1B1+∠A1D1B1=30°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線經(jīng)過(guò)A(﹣4,0),B(0,4)兩點(diǎn),與x軸交于另一點(diǎn)C,直線y=x+5與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.

(1)求拋物線的解析式;

(2)點(diǎn)P是第二象限拋物線上的一個(gè)動(dòng)點(diǎn),連接EP,過(guò)點(diǎn)E作EP的垂線l,在l上截取線段EF,使EF=EP,且點(diǎn)F在第一象限,過(guò)點(diǎn)F作FMx軸于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段FM的長(zhǎng)度為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

(3)在(2)的條件下,過(guò)點(diǎn)E作EHED交MF的延長(zhǎng)線于點(diǎn)H,連接DH,點(diǎn)G為DH的中點(diǎn),當(dāng)直線PG經(jīng)過(guò)AC的中點(diǎn)Q時(shí),求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,AB=AC,AB的垂直平分線與直線AC相交所成銳角為40°,則此等腰三角形的頂角為(
A.50°
B.60°
C.150°
D.50°或130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀:我們約定,在平面直角坐標(biāo)系中,經(jīng)過(guò)某點(diǎn)且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫該點(diǎn)的“特征線”.例如,點(diǎn)M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.

問(wèn)題與探究:如圖,在平面直角坐標(biāo)系中有正方形OABC,點(diǎn)B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過(guò)B、C兩點(diǎn),頂點(diǎn)D在正方形內(nèi)部.

(1)直接寫出點(diǎn)D(m,n)所有的特征線;

(2)若點(diǎn)D有一條特征線是y=x+1,求此拋物線的解析式;

(3)點(diǎn)P是AB邊上除點(diǎn)A外的任意一點(diǎn),連接OP,將△OAP沿著OP折疊,點(diǎn)A落在點(diǎn)A′的位置,當(dāng)點(diǎn)A′在平行于坐標(biāo)軸的D點(diǎn)的特征線上時(shí),滿足(2)中條件的拋物線向下平移多少距離,其頂點(diǎn)落在OP上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=40°,∠C=50°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,則∠ADE的大小是(
A.40°
B.45°
C.50°
D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校進(jìn)行書法比賽,有39名同學(xué)參加預(yù)賽,只能有19名同學(xué)參加決賽,他們預(yù)賽的成績(jī)各不相同,其中一名同學(xué)想知道自己能否進(jìn)入決賽,不僅要了解自己的預(yù)賽成績(jī),還要了解這39名同學(xué)預(yù)賽成績(jī)的( 。
A.平均數(shù)
B.中位數(shù)
C.方差
D.眾數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南宋時(shí)期杰出的數(shù)學(xué)家楊輝是錢塘人,下面的圖表是他在《詳解九章算術(shù)》中記載的“楊輝三角”.此圖揭示了 (為非負(fù)整數(shù))的展開式的項(xiàng)數(shù)及各項(xiàng)系數(shù)的有關(guān)規(guī)律.

(1)請(qǐng)仔細(xì)觀察,填出(a+b)4的展開式中所缺的系數(shù).(a+b)4=a4+4a3b+a2b2+4ab2+b4
(2)此規(guī)律還可以解決實(shí)際問(wèn)題:假如今天是星期三,再過(guò)7天還是星期三,那么再過(guò) 天是星期

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王去早市為餐館選購(gòu)蔬菜,他指著標(biāo)價(jià)為每斤3元的豆角問(wèn)攤主:這豆角能便宜嗎?攤主:多買按八折,你要多少斤?小王報(bào)了數(shù)量后攤主同意按八折賣給小王,并說(shuō):之前一人只比你少買5斤就是按標(biāo)價(jià),還比你多花了3元呢!小王購(gòu)買豆角的數(shù)量是( 。

A. 30 B. 25 C. 20 D. 15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(  )

A.相等的圓周角所對(duì)的弧相等

B.相等的弦所對(duì)的弧相等

C.平分弦的直徑一定垂直于弦

D.任意三角形一定有一個(gè)外接圓

查看答案和解析>>

同步練習(xí)冊(cè)答案