如圖,PA、PB是⊙O的切線,切點分別為A、B兩點,點C在⊙O上,如果ACB=70°,那么∠P的度數(shù)是 ▲ 

 

【答案】

40°。

【解析】切線的性質(zhì),圓周角定理,多邊形內(nèi)角與外角。

【分析】如圖,連接OA,OB,

 

 

∵PA、PB是⊙O的切線,∴OA⊥AP,OB⊥BP。

∴∠OAP=∠OBP=90°,

又∵∠AOB和∠ACB都對弧所對的圓心角和圓周角,且∠ACB=70°,

∴∠AOB=2∠ACB=140°。

∴∠P=360°-(90°+90°+140°)=40°。

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA,PB是⊙O的切線,切點分別為A,B,且∠APB=50°,點C是優(yōu)弧
AB
上的一點,則∠ACB的度數(shù)為
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA、PB是⊙O的切線,A、B為切點,∠OAB=30度.
(1)求∠APB的度數(shù);
(2)當OA=3時,求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,PA、PB是⊙O的兩條切線,A、B是切點,連接AB,直線PO交AB于M.請你根據(jù)圓的對稱性,寫出△PAB的三個正確的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,PA,PB是⊙O是切線,A,B為切點,AC是⊙O的直徑,若∠BAC=25°,則∠P=
50
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•谷城縣模擬)如圖,PA、PB是⊙O 的切線,切點分別是A、B,點C是⊙O上異與點A、B的點,如果∠P=60°,那么∠ACB等于
60°或120°
60°或120°

查看答案和解析>>

同步練習冊答案