【題目】如圖,在△ABC的邊AB,AC的外側(cè)分別作等邊△ABD和等邊△ACE,連接DC,BE.
(1)求證:DC=BE;
(2)若BD=3,BC=4, BD⊥BC于點(diǎn)B,請(qǐng)求出△ABC的面積.
【答案】(1)見解析(2)3
【解析】
⑴根據(jù)等邊三角形的性質(zhì)得AB=AD,AE=AC, ∠BAD=∠BDA=∠DBA=∠CAE=60°,求出∠BAE=∠DAC,根據(jù)SAS證得 △ABE≌△ADC,得到DC=BE.
⑵過點(diǎn)A作AH⊥BC于H ,BD⊥BC,得到∠ACB=90°-∠ABD=90°-60°=30°
2AH=AB,得出AH,BC已知,根據(jù)三角形面積即可求出.
(1)證明: ∵等邊△ABD和等邊△ACE
∴AD=AB,AE=AC,∠DAB=∠EAC=60°
∴∠DAC=∠EAB
∴△DAC ≌△BAE
∴DC=BE
(2) 過點(diǎn)A作AH⊥BC于H
∵BD⊥BC
∴∠DBC=90°
∵等邊△ABD
∴∠DBA=60° ,AB=BD=3
∴∠ABC=30°
∵AH⊥BC
∴AH= =
∴△ABC的面積=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,直線a,b,c分別通過A、D、C三點(diǎn),且a∥b∥c.若a與b之間的距離是5,b與c之間的距離是7,則正方形ABCD的面積是( 。
A.70B.74C.144D.148
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是邊長(zhǎng)為4的正方形,E為AB的中點(diǎn),將△ADE繞點(diǎn)D沿逆時(shí)針方向旋轉(zhuǎn)后得到△DCF,連接EF,則EF的長(zhǎng)為( 。
A. 2 B. 2 C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形斜邊上的中線把直角三角形分成的兩個(gè)三角形的關(guān)系是( )
A. 形狀相同 B. 周長(zhǎng)相等 C. 面積相等 D. 全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A是反比例函數(shù)圖象上一點(diǎn),過點(diǎn)A作AB⊥y軸于點(diǎn)B,點(diǎn)P在x軸上,△ABP的面積為4,則這個(gè)反比例函數(shù)的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,若分得的兩個(gè)小三角形中一個(gè)三角形為等腰三角形,另一個(gè)三角形的三個(gè)內(nèi)角與原來三角形的三個(gè)內(nèi)角分別相等,則稱這條線段叫做這個(gè)三角形的“等角分割線”.
例如,等腰直角三角形斜邊上的高就是這個(gè)等腰直角三角形的一條“等角分割線”.
(1)如圖1,在△ABC中,D是邊BC上一點(diǎn),若∠B=30°,∠BAD=∠C=40°,求證: AD為△ABC的“等角分割線”;
(2)如圖2,△ABC中,∠C=90°,∠B=30°;
①畫出△ABC的“等角分割線”,寫出畫法并說明理由;
②若BC=3,求出①中畫出的“等角分割線”的長(zhǎng)度.
(3)在△ABC中,∠A=24°,若△ABC存在“等角分割線”CD,直接寫出所有符合要求的∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=120°,OP平分∠AOB,且OP=3,若點(diǎn)M,N分別在OA,OB上,ΔPMN為等邊三角形,則滿足上述條件的△PMN有中( )
A.1個(gè)B.2個(gè)C.3個(gè)D.3個(gè)以上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,∠ABC=30°,AC=3,動(dòng)點(diǎn)D從點(diǎn)A出發(fā),在AB邊上以每秒1個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),連結(jié)CD,作點(diǎn)A關(guān)于直線CD的對(duì)稱點(diǎn)E,設(shè)點(diǎn)D運(yùn)動(dòng)時(shí)間為t(s).
(1)若△BDE是以BE為底的等腰三角形,求t的值;
(2)若△BDE為直角三角形,求t的值;
(3)當(dāng)S△BCE≤時(shí),求所有滿足條件的t的取值范圍(所有數(shù)據(jù)請(qǐng)保留準(zhǔn)確值,參考數(shù)據(jù):tan15°=2﹣).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)圖象的一部分,圖象過點(diǎn)A(-3,0),對(duì)稱軸為直線x=﹣1,給出四個(gè)結(jié)論:①c>0;②若點(diǎn)B(-1.5,y1)、C(-2.5,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2;③2a﹣b=0;④ <0.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com