【題目】如圖,在ABCD中,CE是∠DCB的平分線,FAB的中點(diǎn),AB=6,BC=5,則AEEFFB為( 。

A. 1:2:3 B. 2:1:3 C. 3:2:1 D. 3:1:2

【答案】A

【解析】試題分析:根據(jù)題意可知,∠DCE=BEC=BCE,所以BE=BC=5,則AE=ABBE=6﹣5=1,EF=AFAE=3﹣1=2,所以FB=AF=3,所以AEEFFB=1:2:3.

解:∵四邊形ABCD是平行四邊形,

∴∠DCE=BEC,

CE是∠DCB的平分線,

∴∠DCE=BCE,

∴∠CEB=BCE

BC=BE=5,

FAB的中點(diǎn),AB=6,

FB=3,

EF=BEFB=2,

AE=ABEFFB=1,

AEEFFB=1:2:3,

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(5,0),菱形OABC的頂點(diǎn)B,C在第一象限,tanAOC=,將菱形繞點(diǎn)A按順時針方向旋轉(zhuǎn)角α(0°<α<AOC)得到菱形FADE(點(diǎn)O的對應(yīng)點(diǎn)為點(diǎn)F),EF與OC交于點(diǎn)G,連結(jié)AG。

(1)求點(diǎn)B的坐標(biāo);

(2)當(dāng)OG=4時,求AG的長;

(3)求證:GA平分OGE;

(4)連結(jié)BD并延長交軸于點(diǎn)P,當(dāng)點(diǎn)P的坐標(biāo)為(12,0)時,求點(diǎn)G的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個盒子里有標(biāo)號分別為1,2,3,4,5,6的六個小球,這些小球除標(biāo)號數(shù)字外都相同.

(1)從盒中隨機(jī)摸出一個小球,求摸到標(biāo)號數(shù)字為奇數(shù)的小球的概率;

(2)甲、乙兩人用著六個小球玩摸球游戲,規(guī)則是:甲從盒中隨機(jī)摸出一個小球,記下標(biāo)號數(shù)字后放回盒里,充分搖勻后,乙再從盒中隨機(jī)摸出一個小球,并記下標(biāo)號數(shù)字.若兩次摸到小球的標(biāo)號數(shù)字同為奇數(shù)或同為偶數(shù),則判甲贏;若兩次摸到小球的標(biāo)號數(shù)字為一奇一偶,則判乙贏.請用列表法或畫樹狀圖的方法說明這個游戲?qū)、乙兩人是否公平?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形:線段、等邊三角形、平行四邊形、圓、正六邊形.其中既是軸對稱圖形又是中心對稱圖形的有( 。

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2﹣2x=0根的判別式的值為(
A.4
B.2
C.0
D.﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=30°,OP平分∠AOB,PD⊥OBD,PC∥OBOAC,若PC=10,則PD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內(nèi)的圖象如圖所示,點(diǎn)M在y=的圖象上,MC⊥x軸于點(diǎn)C,交y=的圖象于點(diǎn)A;MD⊥y軸于點(diǎn)D,交y=的圖象于點(diǎn)B,當(dāng)點(diǎn)M在y=的圖象上運(yùn)動時,以下結(jié)論:

①S△ODB=S△OCA;

②四邊形OAMB的面積不變;

③當(dāng)點(diǎn)A是MC的中點(diǎn)時,則點(diǎn)B是MD的中點(diǎn).

其中正確結(jié)論的個數(shù)是(

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)M(﹣7,m)、N(﹣8,n)都在函數(shù)y=﹣(k2+2k+4)x+1(k為常數(shù))的圖象上,則m和n的大小關(guān)系是( )
A.m>n
B.m<n
C.m=n
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù):1,﹣13,x,4,它有唯一的眾數(shù)是4,則這組數(shù)據(jù)的中位數(shù)是_____

查看答案和解析>>

同步練習(xí)冊答案