【題目】已知:如圖①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.點F是點E關(guān)于AB的對稱點,連接AF、BF.
(1)求AE和BE的長;
(2)若將△ABF沿著射線BD方向平移,平移中的△ABF為△A1B1F1設(shè)平移的距離為m(平移距離指點B沿BD方向所經(jīng)過的線段長度).
①當(dāng)點F分別平移到線段AB上時,求出m的值
②當(dāng)點F分別平移到線段AD上時,當(dāng)直接寫出相應(yīng)的m的值.
(3)如圖②,將△ABF繞點B順時針旋轉(zhuǎn)一個角α(0°<α<180°),記旋轉(zhuǎn)中的△ABF為△A′BF′,在旋轉(zhuǎn)過程中,設(shè)A′F′所在的直線與直線AE交于點O,當(dāng)∠A′BD=∠FAB時,請直接寫出OB的長.
【答案】(1)AE=4,BE=3;(2)①3;②;(3)1或.
【解析】分析:(1)利用矩形性質(zhì)、勾股定理及三角形面積公式求解;(2)依題意畫出圖形,如答圖2所示.利用平移性質(zhì),確定圖形中的等腰三角形,分別求出m的值;(3)在旋轉(zhuǎn)過程中,分兩種情形分別求解即可.
本題解析:
(1)在Rt△ABD中,AB=5,AD=,
由勾股定理得:BD=.
∵S△ABD=BDAE=ABAD,
∴AE==4.
在Rt△ABE中,AB=5,AE=4,由勾股定理得:BE=3.
(2)設(shè)平移中的三角形為△A′B′F′,如答圖2所示:
由對稱點性質(zhì)可知,∠1=∠2.
由平移性質(zhì)可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.
①當(dāng)點F′落在AB上時,
∵AB∥A′B′,∴∠3=∠4,∴∠3=∠2,
∴BB′=B′F′=3,即m=3;
②當(dāng)點F′落在AD上時,
∵AB∥A′B′,∴∠6=∠2,
∵∠1=∠2,∠5=∠1,∴∠5=∠6,
又易知A′B′⊥AD,
∴△B′F′D為等腰三角形,∴B′D=B′F′=3,
∴BB′=BD﹣B′D=﹣3=,即m=.
(3)如圖3中,設(shè)AE交BA′于K.
∵∠KBE=∠FAB=∠BAE,∠KEB=∠AEB,
∴△EKB∽△EBA,∴可得BE2=EKEA,∴EK=,
在Rt△BEK中,BK=,
∴A′K=5﹣=,∵∠A′=∠KBE,∴OA′∥BE,∴,
∴,∴OK=,∴AO=AE﹣OK=KE=1.
如圖4中,當(dāng)∠DBA′=∠BAF時,點A′在線段BC上,
易證∠OAB=∠OBA,∴OA=OB,設(shè)OA=OB=x,
在Rt△OBE中,∵OB2=OE2+BE2,∴x2=32+(4﹣x)2,
∴x=,∴OA=,
綜上所述,滿足條件的OA的長為1或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年3月,我市某中學(xué)舉行了“愛我中國朗誦比賽”活動,根據(jù)學(xué)生的成績劃分為A、B、C、D四個等級,并繪制了不完整的兩種統(tǒng)計圖.根據(jù)圖中提供的信息,回答下列問題:
(1)參加朗誦比賽的學(xué)生共有 人,并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中,m= ,n= ;C等級對應(yīng)扇形有圓心角為 度;
(3)學(xué)校欲從獲A等級的學(xué)生中隨機選取2人,參加市舉辦的朗誦比賽,請利用列表法或樹形圖法,求獲A等級的小明參加市朗誦比賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次新冠病毒防疫知識競賽有25道題,評委會決定:答對一道題得4分,答錯或不答一題扣1分,在這次知識競賽中,小明被評為優(yōu)秀(85分或85分以上),那么小明至少答對了__________道題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.
(1)從中隨機抽取一張,若以卡片上的數(shù)字作為三角形的三邊長,能構(gòu)成三角形的概率為
(2)先從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張,請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率(滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3交x軸于A(﹣1,0)和B(5,0)兩點,交y軸于點C,點D是線段OB上一動點,連接CD,將線段CD繞點D順時針旋轉(zhuǎn)90°得到線段DE,過點E作直線l⊥x軸于H,交拋物線于點M,過點C作CF⊥l于F.
(1)求拋物線解析式;
(2)如圖2,當(dāng)點F恰好在拋物線上時(與點M重合)
①求點F的坐標(biāo);
②求線段OD的長;
③試探究在直線l上,是否存在點G,使∠EDG=45°?若存在,請直接寫出點G的坐標(biāo);若不存在,請說明理由.
(3)在點D的運動過程中,連接CM,若△COD∽△CFM,請直接寫出線段OD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義符號min{a,b}的含義為:當(dāng)a≥b時min{a,b}=b;當(dāng)a<b時min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.則min{﹣x2+1,﹣x}的最大值是( 。
A. B. C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過點A(-4,0),B(2,0)且與軸交于點C.
(1)求拋物線的解析式;
(2)如圖1,P為線段AC上一點,過點P作軸平行線,交拋物線于點D,當(dāng)△ADC的面積最大時,求點P的坐標(biāo);
(3)如圖2,拋物線頂點為E,EF⊥x軸子F點,M、N分別是軸和線段EF上的動點,設(shè)M的坐標(biāo)為(m,0),若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇同學(xué)要證明命題“兩組對邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖所示的四邊形ABCD,并寫出了如下不完整的已知和求證.已知:如圖,在四邊形ABCD中,BC=AD,
AB=__①___.
求證:四邊形ABCD是___②___四邊形.
(1)在方框中填空,以補全已知和求證;
①;②.
(2)按嘉淇的想法寫出證明.
(3)用文字?jǐn)⑹鏊C命題的逆命題為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com