(2005·海南)如圖所示,正方形ABCD的邊長為1,GCD邊上的一個動點(diǎn)(點(diǎn)GC、D不重合),以CG為一邊向正方形ABCD外作正方形GCEF,連接DEBG的延長線于H

(1)求證:①△BCG≌△DCE,②BHDE

(2)當(dāng)點(diǎn)G運(yùn)動到什么位置時(shí),BH垂直平分DE?請說明理由.

 

答案:略
解析:

(1)證明 ①∵四邊形ABCD和四邊形GCEF均為正方形 ∴BC=DC,CG=CE,∠BCG=DCE=,∴△BCG≌△DCE

 、凇摺BCG≌△DCE ∴∠GBC=EDC.又∵∠EDCCED,

  ∴∠GBC+∠CED=,∴∠BHE=,即BHDE

(2)解 如圖所示

連接BD,由(1)BHDE,要使BH垂直平分DE,則必滿足條件BD=BE

  ∵四邊形ABCD是邊長為1的正方形

  ∴BE=BD= 又∵四邊形GCEF是正方形,∴GC=CE=BEBC=

  即當(dāng)CG=時(shí),BH垂直平分DE


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2005•海南)如圖是某種細(xì)胞分裂示意圖,這種細(xì)胞每過30分鐘便由1個分裂成2個.根據(jù)此規(guī)律可得:
(1)這樣的一個細(xì)胞經(jīng)過第四個30分鐘后可分裂成
16
16
個細(xì)胞;
(2)這樣的一個細(xì)胞經(jīng)過3小時(shí)后可分裂成
64
64
個細(xì)胞;
(3)這樣的一個細(xì)胞經(jīng)過n(n為正整數(shù))小時(shí)后可分裂成
22n
22n
個細(xì)胞.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•海南)如圖所示,在平面直角坐標(biāo)系中,過坐標(biāo)原點(diǎn)O的圓M分別交x軸、y軸于點(diǎn)A(6,0)、B(0,-8).
(1)求直線AB的解析式;
(2)若有一條拋物線的對稱軸平行于y軸且經(jīng)過M點(diǎn),頂點(diǎn)C在圓M上,開口向下,且經(jīng)過點(diǎn)B,求此拋物線的解析式;
(3)設(shè)(2)中的拋物線與x軸交于D(x1,y1)、E(x2,y2)兩點(diǎn),且x1<x2,在拋物線上是否存在點(diǎn)P,使△PDE的面積是△ABC面積的?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年海南省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•海南)如圖所示,在平面直角坐標(biāo)系中,過坐標(biāo)原點(diǎn)O的圓M分別交x軸、y軸于點(diǎn)A(6,0)、B(0,-8).
(1)求直線AB的解析式;
(2)若有一條拋物線的對稱軸平行于y軸且經(jīng)過M點(diǎn),頂點(diǎn)C在圓M上,開口向下,且經(jīng)過點(diǎn)B,求此拋物線的解析式;
(3)設(shè)(2)中的拋物線與x軸交于D(x1,y1)、E(x2,y2)兩點(diǎn),且x1<x2,在拋物線上是否存在點(diǎn)P,使△PDE的面積是△ABC面積的?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《四邊形》(09)(解析版) 題型:解答題

(2005•海南)如圖,在等腰梯形ABCD中,AD∥BC,∠C=60°,AD=10,AB=18,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年海南省中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2005•海南)如圖所示,要在離地面5m處引拉線固定電線桿,使拉線和地面成60°角,若考慮既要符合設(shè)計(jì)要求,又要節(jié)省材料,則在庫存的l1=5.2m、l2=6.2m、l3=7.8m、l4=10m四種備用拉線材料中,拉線AC最好選用( )

A.l1
B.l2
C.l3
D.l4

查看答案和解析>>

同步練習(xí)冊答案