已知:如圖,在等腰梯形ABCD中,ADBCPA=PD.求證:PB=PC.

  請你將上述題目的條件在等腰梯形ABCD中,ADBC改為另一種四邊形,其余條件都不變,使結論PB=PC仍然成立,再根據(jù)改編后的題目畫出圖形,寫出已知和求證,并進行證明.

 

答案:
解析:

 


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、已知:如圖,在等邊三角形ABC,AD=BE=CF,D,E,F(xiàn)不是各邊的中點,AE,BF,CD分別交于P,M,N在每一組全等三角形中,有三個三角形全等,在圖中全等三角形的組數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在等邊△ABC中取點P,使得PA,PB,PC的長分別為3,4,5,將線段AP以點A為旋轉中心順時針旋轉60°得到線段AD,連接BD,下列結論:
①△ABD可以由△APC繞點A順時針旋轉60°得到;②點P與點D的距離為3;③∠APB=150°;
④S△APC+S△APB=6+
9
2
3
,其中正確的結論有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在等邊△ABC中取點P,使得PA,PB,PC的長分別為3,4,5,將線段AP以點A為旋轉中心順時針旋轉60°到線段AD,連接BD,下列結論:
①△ABD可以由△APC繞點A順時針旋轉60°得到;②點P與點D的距離為3;③∠APB=150°;④S△APC+S△APB=6+
9
4
3

其中正確的結論有( 。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知:如圖,在等邊三角形ABC,AD=BE=CF,D,E,F(xiàn)不是各邊的中點,AE,BF,CD分別交于P,M,N在每一組全等三角形中,有三個三角形全等,在圖中全等三角形的組數(shù)是( 。
A.5B.4C.3D.2
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在等邊三角形ABC中,DE分別為BC、AC上的點,且AECD,連  結AD、BE交于點P,作BQAD,垂足為Q.求證:BP=2PQ.


查看答案和解析>>

同步練習冊答案