【題目】科技館是少年兒童節(jié)假日游玩的樂(lè)園.如圖所示,圖中點(diǎn)的橫坐標(biāo)表示科技館從8:30開門后經(jīng)過(guò)的時(shí)間分鐘,縱坐標(biāo)表示到達(dá)科技館的總?cè)藬?shù).圖中曲線對(duì)應(yīng)的函數(shù)解析式為,10:00之后來(lái)的游客較少可忽略不計(jì).

1請(qǐng)寫出圖中曲線對(duì)應(yīng)的函數(shù)解析式;

2為保證科技館內(nèi)游客的游玩質(zhì)量,館內(nèi)人數(shù)不超過(guò)684人,后來(lái)的人在館外休息區(qū)等待.從10:30開始到12:00館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時(shí),館外等待的游客可全部進(jìn)入.請(qǐng)問(wèn)館外游客最多等待多少分鐘?

【答案】1

【解析】

試題分析:1把圖像中的點(diǎn)的坐標(biāo)分別代入對(duì)應(yīng)的解析式,用待定系數(shù)法求出即可;2把y=684代入可得,解得x=78,當(dāng)館內(nèi)人數(shù)減少到624人時(shí),用時(shí)分鐘,館外游客最多等待的時(shí)間是從第一個(gè)到至第二次進(jìn)館的時(shí)的時(shí)間,即30+90-78+15=57分鐘.

試題解析:1

2 ,15+30+90-78=57分鐘

所以,館外游客最多等待57分鐘

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了測(cè)量一幢高樓高AB,在旗桿CD與最右邊的高樓之間選定一點(diǎn)P.測(cè)得旗桿頂C視線PC與地面夾角∠DPC=38°,測(cè)樓頂A視線PA與地面夾角∠APB=52°,量得P到樓底距離PB與旗桿CD高度相等,等于8米,量得旗桿與樓之間距離為DB=33米,求樓高AB是多少米?(寫出過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,AOC=72°,射線OE在∠BOD的內(nèi)部,∠DOE=2BOE

1)求∠BOE和∠AOE的度數(shù);

2)若射線OFOE互相垂直,請(qǐng)直接寫出∠DOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,ABC=90°,點(diǎn)M是AC的中點(diǎn),以AB為直徑作O分別交AC,BM于點(diǎn)D,E.

1求證:MD=ME

2填空:若AB=6,當(dāng)AD=2DM時(shí),DE=___________;

連接OD,OE,當(dāng)A的度數(shù)為____________時(shí),四邊形ODME是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=(x﹣h)2+1(h為常數(shù)),在自變量x的值滿足1≤x≤3的情況下,與其對(duì)應(yīng)的函數(shù)y的最小值為5,則h的值是( 。

A. ﹣1 B. ﹣1或5 C. 5 D. ﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解實(shí)際問(wèn)題

華聯(lián)商廈進(jìn)貨員在廣州發(fā)現(xiàn)一種飾品,預(yù)計(jì)能暢銷市場(chǎng),就用8000元購(gòu)進(jìn)所有飾品,每件按58元很快賣完. 由于銷路很好,又在上海用13200元購(gòu)進(jìn),這次比在廣州多進(jìn)了100件,單價(jià)比廣州貴了10%,但商廈仍按原售價(jià)銷售,最后剩下的15件按八折銷售,很快售完,問(wèn)該商廈這兩批飾品生意共賺了多少 ?(不考慮其它因素)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:如圖,在直角三角形ABC中,BAC=,ADBC于點(diǎn)D,可知:BAD=C(不需要證明);

(1)特例探究:如圖,MAN=90°,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B、C在MAN的邊AM、AN上,且AB=AC, CFAE于點(diǎn)F,BDAE于點(diǎn)D.證明:ABD≌△CAF;

(2)歸納證明:如圖,點(diǎn)B,C在MAN的邊AM、AN上,點(diǎn)E,F(xiàn)在MAN內(nèi)部的射線AD上,1、2分別是ABE、CAF的外角.已知AB=AC,1=2=BAC. 求證:ABE≌△CAF;

(3)拓展應(yīng)用:如圖,在ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線段AD上,1=2=BAC.若ABC的面積為15,則ACF與BDE的面積之和為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知2a-b=3,2b-4a+3的值為(  )

A. -3 B. 9 C. -6 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小紅家有一些大米,爸爸說(shuō):“已經(jīng)吃了25%,”媽媽說(shuō):“如果再買進(jìn)20千克,就和原來(lái)一樣多。”小紅家原來(lái)有多少千克大米?

查看答案和解析>>

同步練習(xí)冊(cè)答案